BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38829047)

  • 1. Revolutionizing Leishmaniasis Treatment with Cutting Edge Drug Delivery Systems and Nanovaccines: An Updated Review.
    Tambe S; Nag S; Pandya SR; Kumar R; Balakrishnan K; Kumar R; Kumar S; Amin P; Gupta PK
    ACS Infect Dis; 2024 Jun; 10(6):1871-1889. PubMed ID: 38829047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of nanotechnology in treatment of leishmaniasis: A Review.
    Akbari M; Oryan A; Hatam G
    Acta Trop; 2017 Aug; 172():86-90. PubMed ID: 28460833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight.
    Jamshaid H; Din FU; Khan GM
    J Nanobiotechnology; 2021 Apr; 19(1):106. PubMed ID: 33858436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a target-free high-throughput screening platform for the discovery of antileishmanial compounds.
    Corman HN; Shoue DA; Norris-Mullins B; Melancon BJ; Morales MA; McDowell MA
    Int J Antimicrob Agents; 2019 Oct; 54(4):496-501. PubMed ID: 31323307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innovative Solutions for the Control of Leishmaniases: Nanoscale Drug Delivery Systems.
    Wagner V; Minguez-Menendez A; Pena J; Fernández-Prada C
    Curr Pharm Des; 2019; 25(14):1582-1592. PubMed ID: 31223081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relapse after treatment with miltefosine for visceral leishmaniasis is associated with increased infectivity of the infecting Leishmania donovani strain.
    Rai K; Cuypers B; Bhattarai NR; Uranw S; Berg M; Ostyn B; Dujardin JC; Rijal S; Vanaerschot M
    mBio; 2013 Oct; 4(5):e00611-13. PubMed ID: 24105765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances and new strategies on leishmaniasis treatment.
    Roatt BM; de Oliveira Cardoso JM; De Brito RCF; Coura-Vital W; de Oliveira Aguiar-Soares RD; Reis AB
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):8965-8977. PubMed ID: 32875362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of liposomal nanoformulations in antileishmania therapy: challenges and perspectives.
    Téllez J; Echeverry MC; Romero I; Guatibonza A; Santos Ramos G; Borges De Oliveira AC; Frézard F; Demicheli C
    J Liposome Res; 2021 Jun; 31(2):169-176. PubMed ID: 32228210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liposomal formulations in the pharmacological treatment of leishmaniasis: a review.
    Ortega V; Giorgio S; de Paula E
    J Liposome Res; 2017 Sep; 27(3):234-248. PubMed ID: 28874072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotechnological Strategies for Treatment of Leishmaniasis--A Review.
    de Almeida L; Terumi Fujimura A; Del Cistia ML; Fonseca-Santos B; Braga Imamura K; Michels PAM; Chorilli M; Graminha MAS
    J Biomed Nanotechnol; 2017 Feb; 13(2):117-33. PubMed ID: 29376626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-leishmanial Nanotherapeutics: A Current Perspective.
    Shah A; Gupta SS
    Curr Drug Metab; 2019; 20(6):473-482. PubMed ID: 30360732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A parasite rescue and transformation assay for antileishmanial screening against intracellular Leishmania donovani amastigotes in THP1 human acute monocytic leukemia cell line.
    Jain SK; Sahu R; Walker LA; Tekwani BL
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23299097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An update on small molecule strategies targeting leishmaniasis.
    Kapil S; Singh PK; Silakari O
    Eur J Med Chem; 2018 Sep; 157():339-367. PubMed ID: 30099256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marine Algae as Source of Novel Antileishmanial Drugs: A Review.
    Tchokouaha Yamthe LR; Appiah-Opong R; Tsouh Fokou PV; Tsabang N; Fekam Boyom F; Nyarko AK; Wilson MD
    Mar Drugs; 2017 Oct; 15(11):. PubMed ID: 29109372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of a cedrol-loaded nanostructured lipid carrier system for in vitro and in vivo susceptibilities of wild and drug resistant Leishmania donovani amastigotes.
    Kar N; Chakraborty S; De AK; Ghosh S; Bera T
    Eur J Pharm Sci; 2017 Jun; 104():196-211. PubMed ID: 28400285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Nanosystems and Strategies for Managing Leishmaniasis.
    Vaghela R; Kulkarni PK; Osmani RAM; Bhosale RR; Naga Sravan Kumar Varma V
    Curr Drug Targets; 2017; 18(14):1598-1621. PubMed ID: 27033193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repurposing Glyburide as Antileishmanial Agent to Fight Against Leishmaniasis.
    Rub A; Shaker K; Kashif M; Arish M; Dukhyil AAB; Alshehri BM; Alaidarous MA; Banawas S; Amir K
    Protein Pept Lett; 2019; 26(5):371-376. PubMed ID: 30827222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge.
    Ponte-Sucre A; Gamarro F; Dujardin JC; Barrett MP; López-Vélez R; García-Hernández R; Pountain AW; Mwenechanya R; Papadopoulou B
    PLoS Negl Trop Dis; 2017 Dec; 11(12):e0006052. PubMed ID: 29240765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis - A review.
    Prasanna P; Kumar P; Kumar S; Rajana VK; Kant V; Prasad SR; Mohan U; Ravichandiran V; Mandal D
    Biomed Pharmacother; 2021 Sep; 141():111920. PubMed ID: 34328115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured delivery systems with improved leishmanicidal activity: a critical review.
    Bruni N; Stella B; Giraudo L; Della Pepa C; Gastaldi D; Dosio F
    Int J Nanomedicine; 2017; 12():5289-5311. PubMed ID: 28794624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.