These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38829060)

  • 1. Crystal Nucleation in Supercooled Atomic Liquids.
    Möller J; Schottelius A; Caresana M; Boesenberg U; Kim C; Dallari F; Ezquerra TA; Fernández JM; Gelisio L; Glaesener A; Goy C; Hallmann J; Kalinin A; Kurta RP; Lapkin D; Lehmkühler F; Mambretti F; Scholz M; Shayduk R; Trinter F; Vartaniants IA; Zozulya A; Galli DE; Grübel G; Madsen A; Caupin F; Grisenti RE
    Phys Rev Lett; 2024 May; 132(20):206102. PubMed ID: 38829060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Glass Transition and Structural Relaxation on Crystal Nucleation: Theoretical Description and Model Analysis.
    Schmelzer JWP; Tropin TV; Fokin VM; Abyzov AS; Zanotto ED
    Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal nucleation rate isotherms in Lennard-Jones liquids.
    Baidakov VG; Tipeev AO; Bobrov KS; Ionov GV
    J Chem Phys; 2010 Jun; 132(23):234505. PubMed ID: 20572719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal growth rates in supercooled atomic liquid mixtures.
    Schottelius A; Mambretti F; Kalinin A; Beyersdorff B; Rothkirch A; Goy C; Müller J; Petridis N; Ritzer M; Trinter F; Fernández JM; Ezquerra TA; Galli DE; Grisenti RE
    Nat Mater; 2020 May; 19(5):512-516. PubMed ID: 32066929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the role of liquid preordering in crystallisation of supercooled liquids.
    Hu YC; Tanaka H
    Nat Commun; 2022 Aug; 13(1):4519. PubMed ID: 35927419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hit and miss of classical nucleation theory as revealed by a molecular simulation study of crystal nucleation in supercooled sulfur hexafluoride.
    Leyssale JM; Delhommelle J; Millot C
    J Chem Phys; 2007 Jul; 127(4):044504. PubMed ID: 17672704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal Nucleation Kinetics in Supercooled Germanium: MD Simulations versus Experimental Data.
    Tipeev AO; Zanotto ED; Rino JP
    J Phys Chem B; 2020 Sep; 124(36):7979-7988. PubMed ID: 32803976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation of tetrahedral solids: A molecular dynamics study of supercooled liquid silicon.
    Li T; Donadio D; Galli G
    J Chem Phys; 2009 Dec; 131(22):224519. PubMed ID: 20001069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic stress inhibits crystallization in Cu-Zr glass-forming liquids.
    Pang HH; Bi QL; Huang HS; Lü YJ
    J Chem Phys; 2017 Dec; 147(23):234503. PubMed ID: 29272946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time observation of the isothermal crystallization kinetics in a deeply supercooled liquid.
    Zanatta M; Cormier L; Hennet L; Petrillo C; Sacchetti F
    Sci Rep; 2017 Mar; 7():43671. PubMed ID: 28255173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical nucleus size for crystallization of supercooled liquids in two dimensions.
    Mizuguchi T; Higeta Y; Odagaki T
    Phys Rev E; 2017 Apr; 95(4-1):042804. PubMed ID: 28505724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of solid-liquid interfacial free energy: a classical nucleation theory based approach.
    Bai XM; Li M
    J Chem Phys; 2006 Mar; 124(12):124707. PubMed ID: 16599718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic-Level Mechanisms of Nucleation of Pure Liquid Metals during Rapid Cooling.
    Han J; Wang C; Liu X; Wang Y; Liu ZK; Jiang J
    Chemphyschem; 2015 Dec; 16(18):3916-27. PubMed ID: 26502833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observing crystal nucleation in four dimensions using atomic electron tomography.
    Zhou J; Yang Y; Yang Y; Kim DS; Yuan A; Tian X; Ophus C; Sun F; Schmid AK; Nathanson M; Heinz H; An Q; Zeng H; Ercius P; Miao J
    Nature; 2019 Jun; 570(7762):500-503. PubMed ID: 31243385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal nucleation in a glass during relaxation well below T
    Abyzov AS; Fokin VM; Yuritsyn NS; Nascimento MLF; Schmelzer JWP; Zanotto ED
    J Chem Phys; 2023 Feb; 158(6):064501. PubMed ID: 36792508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase field theory of interfaces and crystal nucleation in a eutectic system of fcc structure: II. Nucleation in the metastable liquid immiscibility region.
    Tóth GI; Gránásy L
    J Chem Phys; 2007 Aug; 127(7):074710. PubMed ID: 17718630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Communication: crystallite nucleation in supercooled glycerol near the glass transition.
    Yuan HF; Xia T; Plazanet M; Demé B; Orrit M
    J Chem Phys; 2012 Jan; 136(4):041102. PubMed ID: 22299852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelasticity and metastability limit in supercooled liquids.
    Cavagna A; Attanasi A; Lorenzana J
    Phys Rev Lett; 2005 Sep; 95(11):115702. PubMed ID: 16197019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.