These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38829069)

  • 21. Exciton Dephasing in Tungsten Diselenide Atomic Layer.
    Neupane T; Rice Q; Jung S; Tabibi B; Seo FJ
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4502-4504. PubMed ID: 31968506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bright Phonon-Tuned Single-Photon Source.
    Portalupi SL; Hornecker G; Giesz V; Grange T; Lemaître A; Demory J; Sagnes I; Lanzillotti-Kimura ND; Lanco L; Auffèves A; Senellart P
    Nano Lett; 2015 Oct; 15(10):6290-4. PubMed ID: 26325603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitation-induced dephasing in a resonantly driven InAs/GaAs quantum dot.
    Monniello L; Tonin C; Hostein R; Lemaitre A; Martinez A; Voliotis V; Grousson R
    Phys Rev Lett; 2013 Jul; 111(2):026403. PubMed ID: 23889424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superradiance and Exciton Delocalization in Perovskite Quantum Dot Superlattices.
    Blach DD; Lumsargis VA; Clark DE; Chuang C; Wang K; Dou L; Schaller RD; Cao J; Li CW; Huang L
    Nano Lett; 2022 Oct; 22(19):7811-7818. PubMed ID: 36130299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploiting One-Dimensional Exciton-Phonon Coupling for Tunable and Efficient Single-Photon Generation with a Carbon Nanotube.
    Jeantet A; Chassagneux Y; Claude T; Roussignol P; Lauret JS; Reichel J; Voisin C
    Nano Lett; 2017 Jul; 17(7):4184-4188. PubMed ID: 28641011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature-Dependent Hong-Ou-Mandel Experiments.
    Thoma A; Schnauber P; Gschrey M; Seifried M; Wolters J; Schulze JH; Strittmatter A; Rodt S; Carmele A; Knorr A; Heindel T; Reitzenstein S
    Phys Rev Lett; 2016 Jan; 116(3):033601. PubMed ID: 26849594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long Exciton Dephasing Time and Coherent Phonon Coupling in CsPbBr
    Becker MA; Scarpelli L; Nedelcu G; Rainò G; Masia F; Borri P; Stöferle T; Kovalenko MV; Langbein W; Mahrt RF
    Nano Lett; 2018 Dec; 18(12):7546-7551. PubMed ID: 30407011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters.
    Grange T; Hornecker G; Hunger D; Poizat JP; Gérard JM; Senellart P; Auffèves A
    Phys Rev Lett; 2015 May; 114(19):193601. PubMed ID: 26024171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The impact of phonon-assisted tunneling on optical and quantum characteristics of a coupled two-quantum dot system.
    Echeverri-Arteaga S; Vinck-Posada H; Gómez EA
    Heliyon; 2023 Aug; 9(8):e18451. PubMed ID: 37560654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation.
    Ates S; Agha I; Gulinatti A; Rech I; Badolato A; Srinivasan K
    Sci Rep; 2013; 3():1397. PubMed ID: 23466520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity.
    Chen JC; Sato Y; Kosaka R; Hashisaka M; Muraki K; Fujisawa T
    Sci Rep; 2015 Oct; 5():15176. PubMed ID: 26469629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exciton dynamics within the band-edge manifold states: the onset of an acoustic phonon bottleneck.
    Rainò G; Moreels I; Hassinen A; Stöferle T; Hens Z; Mahrt RF
    Nano Lett; 2012 Oct; 12(10):5224-9. PubMed ID: 23016932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studying phonon coherence with a quantum sensor.
    Cleland AY; Wollack EA; Safavi-Naeini AH
    Nat Commun; 2024 Jun; 15(1):4979. PubMed ID: 38862502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exciton dephasing in quantum dots due to LO-phonon coupling: an exactly solvable model.
    Muljarov EA; Zimmermann R
    Phys Rev Lett; 2007 May; 98(18):187401. PubMed ID: 17501607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spin-flip limited exciton dephasing in CdSe/ZnS colloidal quantum dots.
    Masia F; Accanto N; Langbein W; Borri P
    Phys Rev Lett; 2012 Feb; 108(8):087401. PubMed ID: 22463568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes.
    Graham MW; Ma YZ; Green AA; Hersam MC; Fleming GR
    J Chem Phys; 2011 Jan; 134(3):034504. PubMed ID: 21261365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical Coherence in Atomic-Monolayer Transition-Metal Dichalcogenides Limited by Electron-Phonon Interactions.
    Dey P; Paul J; Wang Z; Stevens CE; Liu C; Romero AH; Shan J; Hilton DJ; Karaiskaj D
    Phys Rev Lett; 2016 Mar; 116(12):127402. PubMed ID: 27058100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transform-limited single photons from a single quantum dot.
    Kuhlmann AV; Prechtel JH; Houel J; Ludwig A; Reuter D; Wieck AD; Warburton RJ
    Nat Commun; 2015 Sep; 6():8204. PubMed ID: 26348157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.