These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38829156)

  • 1. Speech preprocessing and enhancement based on joint time domain and time-frequency domain analysis.
    Zhang W; Xie X; Du Y; Huang D
    J Acoust Soc Am; 2024 Jun; 155(6):3580-3588. PubMed ID: 38829156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech Enhancement by Multiple Propagation through the Same Neural Network.
    Grzywalski T; Drgas S
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-Domain Joint Training Strategies of Speech Enhancement and Intent Classification Neural Models.
    Ali MN; Falavigna D; Brutti A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CNN-based noise reduction for multi-channel speech enhancement system with discrete wavelet transform (DWT) preprocessing.
    Cherukuru P; Mustafa MB
    PeerJ Comput Sci; 2024; 10():e1901. PubMed ID: 38435554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-stage hybrid neural beamformer for multi-channel speech enhancement.
    Kuang K; Yang F; Li J; Yang J
    J Acoust Soc Am; 2023 Jun; 153(6):3378. PubMed ID: 37342887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CompNet: Complementary network for single-channel speech enhancement.
    Fan C; Zhang H; Li A; Xiang W; Zheng C; Lv Z; Wu X
    Neural Netw; 2023 Nov; 168():508-517. PubMed ID: 37832318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-fidelity acoustic signal enhancement for phase-OTDR using supervised learning.
    Jiang F; Zhang Z; Lu Z; Li H; Tian Y; Zhang Y; Zhang X
    Opt Express; 2021 Oct; 29(21):33467-33480. PubMed ID: 34809158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Preprocessing Strategies for Pediatric Cochlear Implant Recipients.
    Rakszawski B; Wright R; Cadieux JH; Davidson LS; Brenner C
    J Am Acad Audiol; 2016 Feb; 27(2):85-102. PubMed ID: 26905529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time spectrum estimation-based dual-channel speech-enhancement algorithm for cochlear implant.
    Chen Y; Gong Q
    Biomed Eng Online; 2012 Sep; 11():74. PubMed ID: 23006896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep causal speech enhancement and recognition using efficient long-short term memory Recurrent Neural Network.
    Li Z; Basit A; Daraz A; Jan A
    PLoS One; 2024; 19(1):e0291240. PubMed ID: 38170703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Step Joint Optimization with Auxiliary Loss Function for Noise-Robust Speech Recognition.
    Lee GW; Kim HK
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hierarchical framework approach for voice activity detection and speech enhancement.
    Zhang Y; Tang ZM; Li YP; Luo Y
    ScientificWorldJournal; 2014; 2014():723643. PubMed ID: 24959621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Transformer-Based Dual-Path Network with Amplitude and Complex Domain Feature Fusion for Speech Enhancement.
    Ye M; Wan H
    Entropy (Basel); 2023 Jan; 25(2):. PubMed ID: 36832595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-path transformer-based network with equalization-generation components prediction for flexible vibrational sensor speech enhancement in the time domain.
    Zheng C; Xu L; Fan X; Yang J; Fan J; Huang X
    J Acoust Soc Am; 2022 May; 151(5):2814. PubMed ID: 35649897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Speech Recognition Method Based on Domain-Specific Datasets and Confidence Decision Networks.
    Dong Z; Ding Q; Zhai W; Zhou M
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dense CNN with Self-Attention for Time-Domain Speech Enhancement.
    Pandey A; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2021; 29():1270-1279. PubMed ID: 33997107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TDCAU-Net: retinal vessel segmentation using transformer dilated convolutional attention-based U-Net method.
    Li C; Li Z; Liu W
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38052089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CGA-MGAN: Metric GAN Based on Convolution-Augmented Gated Attention for Speech Enhancement.
    Chen H; Zhang X
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Speech Spatial Covariance Matrix Estimation for Online Multi-Microphone Speech Enhancement.
    Kim M; Cheong S; Song H; Shin JW
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusing Bone-conduction and Air-conduction Sensors for Complex-Domain Speech Enhancement.
    Wang H; Zhang X; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2022; 30():3134-3143. PubMed ID: 37124143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.