BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 38829261)

  • 1. Nanomedicine Targeting Cuproplasia in Cancer: Labile Copper Sequestration Using Polydopamine Particles Blocks Tumor Growth
    Bonet-Aleta J; Encinas-Gimenez M; Oi M; Pezacki AT; Sebastian V; de Martino A; Martín-Pardillos A; Martin-Duque P; Hueso JL; Chang CJ; Santamaria J
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):29844-29855. PubMed ID: 38829261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification of pH-sensitive honokiol nanoparticles based on dopamine coating for targeted therapy of breast cancer.
    Yu R; Zou Y; Liu B; Guo Y; Wang X; Han M
    Colloids Surf B Biointerfaces; 2019 May; 177():1-10. PubMed ID: 30690424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailored-Made Polydopamine Nanoparticles to Induce Ferroptosis in Breast Cancer Cells in Combination with Chemotherapy.
    Nieto C; Vega MA; Martín Del Valle EM
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33808898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A PDA-DTC/Cu-MnO
    Hu X; Lu Y; Zhao W; Sun M; Li R; Feng L; Yao T; Dong C; Shi S
    Chem Commun (Camb); 2021 Apr; 57(34):4158-4161. PubMed ID: 33908477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sonochemically-Produced Metal-Containing Polydopamine Nanoparticles and Their Antibacterial and Antibiofilm Activity.
    Yeroslavsky G; Lavi R; Alishaev A; Rahimipour S
    Langmuir; 2016 May; 32(20):5201-12. PubMed ID: 27133213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal exposure of polydopamine-coated branched Au-Ag nanoparticles induces cell cycle arrest, apoptosis, and autophagy in human bladder cancer cells.
    Zhao X; Qi T; Kong C; Hao M; Wang Y; Li J; Liu B; Gao Y; Jiang J
    Int J Nanomedicine; 2018; 13():6413-6428. PubMed ID: 30410328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polydopamine-Coated Kaempferol-Loaded MOF Nanoparticles: A Novel Therapeutic Strategy for Postoperative Neurocognitive Disorder.
    Huang E; Li H; Han H; Guo L; Liang Y; Huang Z; Qin K; Du X
    Int J Nanomedicine; 2024; 19():4569-4588. PubMed ID: 38799697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor-targeting photodynamic therapy based on folate-modified polydopamine nanoparticles.
    Yan S; Huang Q; Chen J; Song X; Chen Z; Huang M; Xu P; Zhang J
    Int J Nanomedicine; 2019; 14():6799-6812. PubMed ID: 31692522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease.
    Bao X; Zhao J; Sun J; Hu M; Yang X
    ACS Nano; 2018 Sep; 12(9):8882-8892. PubMed ID: 30028940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polydopamine Nanoparticles Camouflaged by Stem Cell Membranes for Synergistic Chemo-Photothermal Therapy of Malignant Bone Tumors.
    Zhang M; Zhang F; Liu T; Shao P; Duan L; Yan J; Mu X; Jiang J
    Int J Nanomedicine; 2020; 15():10183-10197. PubMed ID: 33363374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ROS mediated Cu[Fe(CN)
    Tripathy S; Haque S; Londhe S; Das S; Norbert CC; Chandra Y; Sreedhar B; Patra CR
    Biomater Adv; 2024 Jun; 160():213832. PubMed ID: 38547763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diselenium-linked dimeric prodrug nanomedicine breaking the intracellular redox balance for triple-negative breast cancer targeted therapy.
    Chen M; Zhang M; Lu X; Li Y; Lu C
    Eur J Pharm Biopharm; 2023 Dec; 193():16-27. PubMed ID: 37865134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydopamine-mediated bio-inspired synthesis of copper sulfide nanoparticles for T
    Xiong Y; Sun F; Zhang Y; Yang Z; Liu P; Zou Y; Yu Y; Tong F; Yi C; Yang S; Xu Z
    Colloids Surf B Biointerfaces; 2019 Jan; 173():607-615. PubMed ID: 30359959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Assembled Dual-Targeted Epirubicin-Hybrid Polydopamine Nanoparticles for Combined Chemo-Photothermal Therapy of Triple-Negative Breast Cancer.
    Li X; Zou Q; Zhang J; Zhang P; Zhou X; Yalamarty SSK; Liang X; Liu Y; Zheng Q; Gao J
    Int J Nanomedicine; 2020; 15():6791-6811. PubMed ID: 32982234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rodlike Particles of Polydopamine-CdTe Quantum Dots: An Actuator As a Photothermal Agent and Reactive Oxygen Species-Generating Nanoplatform for Cancer Therapy.
    Ortega GA; Del Sol-Fernández S; Portilla Y; Cedeño E; Reguera E; Srinivasan S; Barber DF; Marin E; Rajabzadeh AR
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42357-42369. PubMed ID: 34472848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper oxide nanoparticles inhibit pancreatic tumor growth primarily by targeting tumor initiating cells.
    Benguigui M; Weitz IS; Timaner M; Kan T; Shechter D; Perlman O; Sivan S; Raviv Z; Azhari H; Shaked Y
    Sci Rep; 2019 Aug; 9(1):12613. PubMed ID: 31471546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metronidazole-loaded polydopamine nanomedicine with antioxidant and antibacterial bioactivity for periodontitis.
    Yan M; Liang W; Du L; Guo R; Cao Y; Ni S; Zhong Y; Zhang K; Qu K; Qin X; Chen L; Wu W
    Nanomedicine (Lond); 2023 Dec; 18(29):2143-2157. PubMed ID: 38127626
    [No Abstract]   [Full Text] [Related]  

  • 18. Glucose oxidase and polydopamine functionalized iron oxide nanoparticles: combination of the photothermal effect and reactive oxygen species generation for dual-modality selective cancer therapy.
    Zhang T; Li Y; Hong W; Chen Z; Peng P; Yuan S; Qu J; Xiao M; Xu L
    J Mater Chem B; 2019 Apr; 7(13):2190-2200. PubMed ID: 32073578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting mitochondria with Au-Ag@Polydopamine nanoparticles for papillary thyroid cancer therapy.
    Wang W; Liu J; Feng W; Du S; Ge R; Li J; Liu Y; Sun H; Zhang D; Zhang H; Yang B
    Biomater Sci; 2019 Feb; 7(3):1052-1063. PubMed ID: 30628592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxi-Redox Selective Breast Cancer Treatment: An In Vitro Study of Theranostic In-Based Oxide Nanoparticles for Controlled Generation or Prevention of Oxidative Stress.
    Hsu NS; Tehei M; Hossain MS; Rosenfeld A; Shiddiky MJA; Sluyter R; Dou SX; Yamauchi Y; Konstantinov K
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2204-2217. PubMed ID: 33399455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.