These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38829279)

  • 1. The Hydraulic Evolution of Groundwater-Fed Pit Lakes After Mine Closure.
    Moser B; Cook PG; Miller AD; Dogramaci S; Wallis I
    Ground Water; 2024 Jun; ():. PubMed ID: 38829279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facilitating Open Pit Mine Closure with Managed Aquifer Recharge.
    Cook PG; Miller AD; Wallis I; Dogramaci S
    Ground Water; 2022 Jul; 60(4):477-487. PubMed ID: 35094394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mine dewatering and impact assessment in an arid area: Case of Gulf region.
    Yihdego Y; Drury L
    Environ Monit Assess; 2016 Nov; 188(11):634. PubMed ID: 27778216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modelling of the groundwater inflow to an advancing open pit mine: Kolahdarvazeh pit, Central Iran.
    Bahrami S; Doulati Ardejani F; Aslani S; Baafi E
    Environ Monit Assess; 2014 Dec; 186(12):8573-85. PubMed ID: 25186026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Groundwater Throughflow and Seawater Intrusion in High Quality Coastal Aquifers.
    Costall AR; Harris BD; Teo B; Schaa R; Wagner FM; Pigois JP
    Sci Rep; 2020 Jun; 10(1):9866. PubMed ID: 32555499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of physical mass transport through oil sands fluid fine tailings in an end pit lake: a multi-tracer study.
    Dompierre KA; Barbour SL
    J Contam Hydrol; 2016 Jun; 189():12-26. PubMed ID: 27061245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating groundwater-lake interactions by hydraulic heads and a water balance.
    Rudnick S; Lewandowski J; Nützmann G
    Ground Water; 2015; 53(2):227-37. PubMed ID: 24854019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered river flow-through to improve mine pit lake and river values.
    McCullough CD; Schultze M
    Sci Total Environ; 2018 Nov; 640-641():217-231. PubMed ID: 29859438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on evolution of groundwater-lake system in typical prairie open-pit coal mine area.
    Xia M; Dong S; Chen Y; Liu H
    Environ Geochem Health; 2021 Oct; 43(10):4075-4087. PubMed ID: 33772386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of rock stability challenges affecting the formation of sustainable pit lake towards mine closure following crown pillar extraction in open pit-underground mines.
    Massawe VA; Unver B
    J Environ Manage; 2024 Apr; 356():120693. PubMed ID: 38537470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mine water supply assessment and evaluation of the system response to the designed demand in a desert region, central Saudi Arabia.
    Yihdego Y; Drury L
    Environ Monit Assess; 2016 Nov; 188(11):619. PubMed ID: 27743279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Managed Aquifer Recharge in Mining: A Review.
    Sloan S; Cook PG; Wallis I
    Ground Water; 2023; 61(3):305-317. PubMed ID: 36950867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stream-pit lake interactions in an abandoned mining area affected by acid drainage (Iberian Pyrite Belt).
    Fuentes-López JM; Olías M; León R; Basallote MD; Macías F; Moreno-González R; Cánovas CR
    Sci Total Environ; 2022 Aug; 833():155224. PubMed ID: 35421501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrochemical analysis and identification of open-pit mine water sources: a case study from the Dagushan iron mine in Northeast China.
    Liu Q; Zhang Z; Zhang B; Mu W; Zhang H; Li Y; Xu N
    Sci Rep; 2021 Nov; 11(1):23152. PubMed ID: 34848806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water inrush characteristics and hazard effects during the transition from open-pit to underground mining: a case study.
    Zhang H; Zhang B; Xu N; Shi L; Wang H; Lin W; Ye Y
    R Soc Open Sci; 2019 Mar; 6(3):181402. PubMed ID: 31032002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravel pit lake ecosystems reduce nitrate and phosphate concentrations in the outflowing groundwater.
    Weilhartner A; Muellegger C; Kainz M; Mathieu F; Hofmann T; Battin TJ
    Sci Total Environ; 2012 Mar; 420():222-8. PubMed ID: 22341469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using an unmanned aerial vehicle water sampler to gather data in a pit-lake mining environment to assess closure and monitoring.
    Straight BJ; Castendyk DN; McKnight DM; Newman CP; Filiatreault P; Pino A
    Environ Monit Assess; 2021 Aug; 193(9):572. PubMed ID: 34387759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ebullition enhances chemical mass transport across the tailings-water interface of oil sands pit lakes.
    Francis DJ; Barbour SL; Lindsay MBJ
    J Contam Hydrol; 2022 Feb; 245():103938. PubMed ID: 34915427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geochemical characterization of acid mine lakes in northwest Turkey and their effect on the environment.
    Yucel DS; Baba A
    Arch Environ Contam Toxicol; 2013 Apr; 64(3):357-76. PubMed ID: 23223936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of factors limiting algal growth in acidic pit lakes--a case study from Western Australia, Australia.
    Kumar RN; McCullough CD; Lund MA; Larranaga SA
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5915-24. PubMed ID: 26593729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.