These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38829366)

  • 21. Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells.
    Sa YJ; Park C; Jeong HY; Park SH; Lee Z; Kim KT; Park GG; Joo SH
    Angew Chem Int Ed Engl; 2014 Apr; 53(16):4102-6. PubMed ID: 24554521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction.
    Zheng Y; Jiao Y; Jaroniec M; Jin Y; Qiao SZ
    Small; 2012 Dec; 8(23):3550-66. PubMed ID: 22893586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms for enhanced performance of platinum-based electrocatalysts in proton exchange membrane fuel cells.
    Su L; Jia W; Li CM; Lei Y
    ChemSusChem; 2014 Feb; 7(2):361-78. PubMed ID: 24449484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials.
    Zhou M; Wang HL; Guo S
    Chem Soc Rev; 2016 Mar; 45(5):1273-307. PubMed ID: 26647087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Green and sustainable use of macadamia nuts as support material in Pt-based direct methanol fuel cells.
    Mojapelo NA; Seroka NS; Khotseng L
    Heliyon; 2024 May; 10(9):e29907. PubMed ID: 38707303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanocarbons-Based Trifunctional Electrocatalysts for Overall Water Splitting and Metal-Air Batteries: Metal-Free and Hybrid Electrocatalysts.
    Saji VS
    Chem Asian J; 2024 Jul; ():e202400712. PubMed ID: 39037924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives.
    Zaman S; Huang L; Douka AI; Yang H; You B; Xia BY
    Angew Chem Int Ed Engl; 2021 Aug; 60(33):17832-17852. PubMed ID: 33533165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dense Pt Nanowire Electrocatalyst for Improved Fuel Cell Performance Using a Graphitic Carbon Nitride-Decorated Hierarchical Nanocarbon Support.
    Fang B; Daniel L; Bonakdarpour A; Govindarajan R; Sharman J; Wilkinson DP
    Small; 2021 Jul; 17(30):e2102288. PubMed ID: 34139106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals.
    Porter NS; Wu H; Quan Z; Fang J
    Acc Chem Res; 2013 Aug; 46(8):1867-77. PubMed ID: 23461578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cell-II-Platinum-Based Catalysts.
    Hossain SS; Ahmad Alwi MM; Saleem J; Al-Odail F; Basu A; Mozahar Hossain M
    Chem Rec; 2022 Dec; 22(12):e202200156. PubMed ID: 36073789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon-Based Electrocatalysts for Acidic Oxygen Reduction Reaction.
    Cui P; Zhao L; Long Y; Dai L; Hu C
    Angew Chem Int Ed Engl; 2023 Mar; 62(14):e202218269. PubMed ID: 36645824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Platinum-Based Catalysts on Various Carbon Supports and Conducting Polymers for Direct Methanol Fuel Cell Applications: a Review.
    Ramli ZAC; Kamarudin SK
    Nanoscale Res Lett; 2018 Dec; 13(1):410. PubMed ID: 30578446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic advancements in carbonaceous materials for bio-energy generation in microbial fuel cells: a review.
    Dhilllon SK; Kundu PP; Jain R
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):24815-24841. PubMed ID: 34993799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hollow PtFe Alloy Nanoparticles Derived from Pt-Fe
    Yang Z; Shang L; Xiong X; Shi R; Waterhouse GIN; Zhang T
    Chemistry; 2020 Mar; 26(18):4090-4096. PubMed ID: 31782577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.
    Qi W; Yan P; Su DS
    Acc Chem Res; 2018 Mar; 51(3):640-648. PubMed ID: 29446621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoscaffold effects on the performance of air-cathodes for microbial fuel cells: Sustainable Fe/N-carbon electrocatalysts for the oxygen reduction reaction under neutral pH conditions.
    Iannaci A; Ingle S; Domínguez C; Longhi M; Merdrignac-Conanec O; Ababou-Girard S; Barrière F; Colavita PE
    Bioelectrochemistry; 2021 Dec; 142():107937. PubMed ID: 34474203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of Structurally Stable and Highly Active PtCo
    Wang S; Xu W; Zhu Y; Luo Q; Zhang C; Tang S; Du Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):827-835. PubMed ID: 33370090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bio-inspired Construction of Advanced Fuel Cell Cathode with Pt Anchored in Ordered Hybrid Polymer Matrix.
    Xia Z; Wang S; Jiang L; Sun H; Liu S; Fu X; Zhang B; Sheng Su D; Wang J; Sun G
    Sci Rep; 2015 Nov; 5():16100. PubMed ID: 26537781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal-Nitrogen-Graphene for Efficient Oxygen Reduction.
    Zaman S; Su YQ; Dong CL; Qi R; Huang L; Qin Y; Huang YC; Li FM; You B; Guo W; Li Q; Ding S; Yu Xia B
    Angew Chem Int Ed Engl; 2022 Feb; 61(6):e202115835. PubMed ID: 34894036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Annealing Behaviour of Pt and PtNi Nanowires for Proton Exchange Membrane Fuel Cells.
    Mardle P; Du S
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30126232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.