These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 38829432)
1. Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes. Sun D; Rozmoš M; Kokkoris V; Kotianová M; Hršelová H; Bukovská P; Faghihinia M; Jansa J Mycorrhiza; 2024 Jul; 34(4):303-316. PubMed ID: 38829432 [TBL] [Abstract][Full Text] [Related]
2. Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae. Pepe A; Giovannetti M; Sbrana C Mycorrhiza; 2016 May; 26(4):325-32. PubMed ID: 26630971 [TBL] [Abstract][Full Text] [Related]
3. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers. Bukovská P; Gryndler M; Gryndlerová H; Püschel D; Jansa J Front Microbiol; 2016; 7():711. PubMed ID: 27242732 [TBL] [Abstract][Full Text] [Related]
4. Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers? Bukovská P; Bonkowski M; Konvalinková T; Beskid O; Hujslová M; Püschel D; Řezáčová V; Gutiérrez-Núñez MS; Gryndler M; Jansa J Mycorrhiza; 2018 Aug; 28(5-6):465. PubMed ID: 29951863 [TBL] [Abstract][Full Text] [Related]
5. Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers? Bukovská P; Bonkowski M; Konvalinková T; Beskid O; Hujslová M; Püschel D; Řezáčová V; Gutiérrez-Núñez MS; Gryndler M; Jansa J Mycorrhiza; 2018 Apr; 28(3):269-283. PubMed ID: 29455336 [TBL] [Abstract][Full Text] [Related]
6. Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency. Luthfiana N; Inamura N; Tantriani ; Sato T; Saito K; Oikawa A; Chen W; Tawaraya K Mycorrhiza; 2021 May; 31(3):403-412. PubMed ID: 33459866 [TBL] [Abstract][Full Text] [Related]
7. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphate efficiency. Wang X; Zhao S; Bücking H Ann Bot; 2016 Jul; 118(1):11-21. PubMed ID: 27208734 [TBL] [Abstract][Full Text] [Related]
8. A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis. Zeng T; Rodriguez-Moreno L; Mansurkhodzaev A; Wang P; van den Berg W; Gasciolli V; Cottaz S; Fort S; Thomma BPHJ; Bono JJ; Bisseling T; Limpens E New Phytol; 2020 Jan; 225(1):448-460. PubMed ID: 31596956 [TBL] [Abstract][Full Text] [Related]
9. Anastomosis behavior differs between asymbiotic and symbiotic hyphae of Rhizophagus clarus. Purin S; Morton JB Mycologia; 2013; 105(3):589-602. PubMed ID: 23233505 [TBL] [Abstract][Full Text] [Related]
10. Different Arbuscular Mycorrhizal Fungi Cocolonizing on a Single Plant Root System Recruit Distinct Microbiomes. Zhou J; Chai X; Zhang L; George TS; Wang F; Feng G mSystems; 2020 Dec; 5(6):. PubMed ID: 33323417 [TBL] [Abstract][Full Text] [Related]
11. Recently fixed carbon allocation in strawberry plants and concurrent inorganic nitrogen uptake through arbuscular mycorrhizal fungi. Tomè E; Tagliavini M; Scandellari F J Plant Physiol; 2015 May; 179():83-9. PubMed ID: 25841208 [TBL] [Abstract][Full Text] [Related]
12. Arbuscular mycorrhizal fungi and Streptomyces: brothers in arms to shape the structure and function of the hyphosphere microbiome in the early stage of interaction. Jin Z; Jiang F; Wang L; Declerck S; Feng G; Zhang L Microbiome; 2024 May; 12(1):83. PubMed ID: 38725008 [TBL] [Abstract][Full Text] [Related]
13. Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability. Sato T; Hachiya S; Inamura N; Ezawa T; Cheng W; Tawaraya K Mycorrhiza; 2019 Nov; 29(6):599-605. PubMed ID: 31745622 [TBL] [Abstract][Full Text] [Related]
14. Wheat dwarfing reshapes plant and fungal development in arbuscular mycorrhizal symbiosis. Alaux PL; Courty PE; Fréville H; David J; Rocher A; Taschen E Mycorrhiza; 2024 Jul; 34(4):351-360. PubMed ID: 38816524 [TBL] [Abstract][Full Text] [Related]
15. Growth dynamics of geographically different arbuscular mycorrhizal fungal isolates belonging to the 'Rhizophagus clade' under monoxenic conditions. Silvani VA; Bidondo LF; Bompadre MJ; Colombo RP; Pérgola M; Bompadre A; Fracchia S; Godeas A Mycologia; 2014; 106(5):963-75. PubMed ID: 24891409 [TBL] [Abstract][Full Text] [Related]
16. Anastomosis within and between networks of Rhizophagus irregularis is differentially influenced by fungicides. Rodriguez-Morelos VH; Calonne-Salmon M; Declerck S Mycorrhiza; 2023 Mar; 33(1-2):15-21. PubMed ID: 36680651 [TBL] [Abstract][Full Text] [Related]
17. Arbuscular Mycorrhiza Mediates Efficient Recycling From Soil to Plants of Nitrogen Bound in Chitin. Bukovská P; Rozmoš M; Kotianová M; Gančarčíková K; Dudáš M; Hršelová H; Jansa J Front Microbiol; 2021; 12():574060. PubMed ID: 33679625 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Pérez-Tienda J; Corrêa A; Azcón-Aguilar C; Ferrol N Plant Physiol Biochem; 2014 Feb; 75():1-8. PubMed ID: 24361504 [TBL] [Abstract][Full Text] [Related]
19. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Garg N; Pandey R Mycorrhiza; 2015 Apr; 25(3):165-80. PubMed ID: 25155616 [TBL] [Abstract][Full Text] [Related]
20. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. Frey B; Schüepp H New Phytol; 1993 Jun; 124(2):221-230. PubMed ID: 33874357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]