These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38829794)

  • 1. Synchronization transitions in phase oscillator populations with partial adaptive coupling.
    Chen Z; Zheng Z; Xu C
    Chaos; 2024 Jun; 34(6):. PubMed ID: 38829794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxation dynamics of phase oscillators with generic heterogeneous coupling.
    Xu C; Jin X; Wu Y
    Phys Rev E; 2023 Feb; 107(2-1):024206. PubMed ID: 36932595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterministic correlations enhance synchronization in oscillator populations with heterogeneous coupling.
    Yu H; Zheng Z; Xu C
    Phys Rev E; 2023 Nov; 108(5-1):054203. PubMed ID: 38115455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explosive or Continuous: Incoherent state determines the route to synchronization.
    Xu C; Gao J; Sun Y; Huang X; Zheng Z
    Sci Rep; 2015 Jul; 5():12039. PubMed ID: 26160578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Route to synchronization in coupled phase oscillators with frequency-dependent coupling: Explosive or continuous?
    Kumar M; Gupta S
    Phys Rev E; 2022 Oct; 106(4-1):044310. PubMed ID: 36397479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal scaling and phase transitions of coupled phase oscillator populations.
    Xu C; Wang X; Skardal PS
    Phys Rev E; 2020 Oct; 102(4-1):042310. PubMed ID: 33212588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial locking in phase-oscillator populations with heterogenous coupling.
    Xu C; Wu Y; Zheng Z; Tang L
    Chaos; 2022 Jun; 32(6):063106. PubMed ID: 35778151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization and phase redistribution in self-replicating populations of coupled oscillators and excitable elements.
    Yu W; Wood KB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062708. PubMed ID: 26172737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explosive transitions to synchronization in networks of phase oscillators.
    Leyva I; Navas A; Sendiña-Nadal I; Almendral JA; Buldú JM; Zanin M; Papo D; Boccaletti S
    Sci Rep; 2013; 3():1281. PubMed ID: 23412391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization transitions in Kuramoto networks with higher-mode interaction.
    Berner R; Lu A; Sokolov IM
    Chaos; 2023 Jul; 33(7):. PubMed ID: 37463093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling.
    Wu H; Kang L; Liu Z; Dhamala M
    Sci Rep; 2018 Oct; 8(1):15521. PubMed ID: 30341395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tiered synchronization in Kuramoto oscillators with adaptive higher-order interactions.
    Rajwani P; Suman A; Jalan S
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37276556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A universal route to explosive phenomena.
    Kuehn C; Bick C
    Sci Adv; 2021 Apr; 7(16):. PubMed ID: 33863722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and bifurcation of collective dynamics in phase oscillator populations with general coupling.
    Xu C; Wang X; Zheng Z; Cai Z
    Phys Rev E; 2021 Mar; 103(3-1):032307. PubMed ID: 33862749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization transitions in adaptive Kuramoto-Sakaguchi oscillators with higher-order interactions.
    Sharma A; Rajwani P; Jalan S
    Chaos; 2024 Aug; 34(8):. PubMed ID: 39213012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collective dynamics of phase oscillator populations with three-body interactions.
    Wang X; Zheng Z; Xu C
    Phys Rev E; 2021 Nov; 104(5-1):054208. PubMed ID: 34942717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explosive synchronization coexists with classical synchronization in the Kuramoto model.
    Danziger MM; Moskalenko OI; Kurkin SA; Zhang X; Havlin S; Boccaletti S
    Chaos; 2016 Jun; 26(6):065307. PubMed ID: 27369869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delay-dependent transitions of phase synchronization and coupling symmetry between neurons shaped by spike-timing-dependent plasticity.
    Madadi Asl M; Ramezani Akbarabadi S
    Cogn Neurodyn; 2023 Apr; 17(2):523-536. PubMed ID: 37007192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transitions from spatiotemporal chaos to cluster and complete synchronization states in a shift-invariant set of coupled nonlinear oscillators.
    Chembo Kouomou Y; Woafo P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046205. PubMed ID: 12786458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergent explosive synchronization in adaptive complex networks.
    Avalos-Gaytán V; Almendral JA; Leyva I; Battiston F; Nicosia V; Latora V; Boccaletti S
    Phys Rev E; 2018 Apr; 97(4-1):042301. PubMed ID: 29758636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.