These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38829921)

  • 1. Plasmon-Induced Hot Electrons in Nanostructured Materials: Generation, Collection, and Application to Photochemistry.
    Zhou L; Huang Q; Xia Y
    Chem Rev; 2024 Jul; 124(14):8597-8619. PubMed ID: 38829921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective.
    Tang H; Chen CJ; Huang Z; Bright J; Meng G; Liu RS; Wu N
    J Chem Phys; 2020 Jun; 152(22):220901. PubMed ID: 32534522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic hot electrons from exciton-to-hot electron upconversion in Mn-doped semiconductor nanocrystals.
    Parobek D; Qiao T; Son DH
    J Chem Phys; 2019 Sep; 151(12):120901. PubMed ID: 31575181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared driven hot electron generation and transfer from non-noble metal plasmonic nanocrystals.
    Zhou D; Li X; Zhou Q; Zhu H
    Nat Commun; 2020 Jun; 11(1):2944. PubMed ID: 32522995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral Plasmonic Nanocrystals for Generation of Hot Electrons: Toward Polarization-Sensitive Photochemistry.
    Liu T; Besteiro LV; Liedl T; Correa-Duarte MA; Wang Z; Govorov AO
    Nano Lett; 2019 Feb; 19(2):1395-1407. PubMed ID: 30681343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embedding plasmonic nanostructure diodes enhances hot electron emission.
    Knight MW; Wang Y; Urban AS; Sobhani A; Zheng BY; Nordlander P; Halas NJ
    Nano Lett; 2013 Apr; 13(4):1687-92. PubMed ID: 23452192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-Plasmon-Driven Hot Electron Photochemistry.
    Zhang Y; He S; Guo W; Hu Y; Huang J; Mulcahy JR; Wei WD
    Chem Rev; 2018 Mar; 118(6):2927-2954. PubMed ID: 29190069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.
    Harutyunyan H; Martinson AB; Rosenmann D; Khorashad LK; Besteiro LV; Govorov AO; Wiederrecht GP
    Nat Nanotechnol; 2015 Sep; 10(9):770-4. PubMed ID: 26237345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of hot electrons in nanostructures incorporating conventional and unconventional plasmonic materials.
    Liu T; Besteiro LV; Wang Z; Govorov AO
    Faraday Discuss; 2019 May; 214():199-213. PubMed ID: 30830140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confined Hot Electron Relaxation at the Molecular Heterointerface of the Size-Selected Plasmonic Noble Metal Nanocluster and Layered C
    Shibuta M; Yamamoto K; Ohta T; Inoue T; Mizoguchi K; Nakaya M; Eguchi T; Nakajima A
    ACS Nano; 2021 Jan; 15(1):1199-1209. PubMed ID: 33411503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Nonthermal Distribution of Hot Electrons in a Semiconductor Injected from a Plasmonic Gold Nanostructure.
    Cushing SK; Chen CJ; Dong CL; Kong XT; Govorov AO; Liu RS; Wu N
    ACS Nano; 2018 Jul; 12(7):7117-7126. PubMed ID: 29945441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy and Momentum Distribution of Surface Plasmon-Induced Hot Carriers Isolated
    Hartelt M; Terekhin PN; Eul T; Mahro AK; Frisch B; Prinz E; Rethfeld B; Stadtmüller B; Aeschlimann M
    ACS Nano; 2021 Dec; 15(12):19559-19569. PubMed ID: 34852458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling Hot Charge Carrier Transfer in Monolithic AlSiAl Heterostructures for Plasmonic On-Chip Energy Harvesting.
    Song Z; Sistani M; Schwingshandl F; Lugstein A
    Small; 2023 Sep; 19(36):e2301055. PubMed ID: 37162487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy.
    Zhan C; Chen XJ; Huang YF; Wu DY; Tian ZQ
    Acc Chem Res; 2019 Oct; 52(10):2784-2792. PubMed ID: 31532621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical predictions for hot-carrier generation from surface plasmon decay.
    Sundararaman R; Narang P; Jermyn AS; Goddard WA; Atwater HA
    Nat Commun; 2014 Dec; 5():5788. PubMed ID: 25511713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the Origin of Plasmon-Generated Hot Holes in Water Oxidation.
    Huang J; Guo W; He S; Mulcahy JR; Montoya A; Goodsell J; Wijerathne N; Angerhofer A; Wei WD
    ACS Nano; 2023 Apr; 17(8):7813-7820. PubMed ID: 37053524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.