These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 38829921)

  • 21. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manipulation of hot electron flow on plasmonic nanodiodes fabricated by nanosphere lithography.
    Kang M; Park Y; Lee H; Lee C; Park JY
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33607643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differentiating Plasmon-Enhanced Chemical Reactions on AgPd Hollow Nanoplates through Surface-Enhanced Raman Spectroscopy.
    Jiao S; Dai K; Besteiro LV; Gao H; Chen X; Wang W; Zhang Y; Liu C; Pérez-Juste I; Pérez-Juste J; Pastoriza-Santos I; Zheng G
    ACS Catal; 2024 May; 14(9):6799-6806. PubMed ID: 38721378
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.
    Dong Y; Parobek D; Rossi D; Son DH
    Nano Lett; 2016 Nov; 16(11):7270-7275. PubMed ID: 27701861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic Nickel-TiO
    He S; Huang J; Goodsell JL; Angerhofer A; Wei WD
    Angew Chem Int Ed Engl; 2019 Apr; 58(18):6038-6041. PubMed ID: 30919543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures.
    Kontoleta E; Tsoukala A; Askes SHC; Zoethout E; Oksenberg E; Agrawal H; Garnett EC
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):35986-35994. PubMed ID: 32672034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hot Electrons in a Steady State: Interband vs Intraband Excitation of Plasmonic Gold.
    Lee A; Wu S; Yim JE; Zhao B; Sheldon MT
    ACS Nano; 2024 Jul; 18(29):19077-19085. PubMed ID: 38996185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hot Charge Carrier Transmission from Plasmonic Nanostructures.
    Christopher P; Moskovits M
    Annu Rev Phys Chem; 2017 May; 68():379-398. PubMed ID: 28301756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure.
    Rossi TP; Erhart P; Kuisma M
    ACS Nano; 2020 Aug; 14(8):9963-9971. PubMed ID: 32687311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications.
    Ninakanti R; Dingenen F; Borah R; Peeters H; Verbruggen SW
    Top Curr Chem (Cham); 2022 Aug; 380(5):40. PubMed ID: 35951165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry.
    Zheng BY; Zhao H; Manjavacas A; McClain M; Nordlander P; Halas NJ
    Nat Commun; 2015 Jul; 6():7797. PubMed ID: 26165521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hot electron-driven hydrogen evolution using anisotropic gold nanostructure assembled monolayer MoS
    Zhang P; Fujitsuka M; Majima T
    Nanoscale; 2017 Jan; 9(4):1520-1526. PubMed ID: 28067378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites.
    Du L; Shi G; Zhao Y; Chen X; Sun H; Liu F; Cheng F; Xie W
    Chem Sci; 2019 Nov; 10(41):9605-9612. PubMed ID: 32055334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications.
    Jiang R; Li B; Fang C; Wang J
    Adv Mater; 2014 Aug; 26(31):5274-309. PubMed ID: 24753398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures.
    García de Arquer FP; Mihi A; Kufer D; Konstantatos G
    ACS Nano; 2013 Apr; 7(4):3581-8. PubMed ID: 23495769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials.
    Boerigter C; Aslam U; Linic S
    ACS Nano; 2016 Jun; 10(6):6108-15. PubMed ID: 27268233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced generation and anisotropic Coulomb scattering of hot electrons in an ultra-broadband plasmonic nanopatch metasurface.
    Sykes ME; Stewart JW; Akselrod GM; Kong XT; Wang Z; Gosztola DJ; Martinson ABF; Rosenmann D; Mikkelsen MH; Govorov AO; Wiederrecht GP
    Nat Commun; 2017 Oct; 8(1):986. PubMed ID: 29042536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.