These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 38829921)
21. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures. Wilson AJ; Jain PK Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334 [TBL] [Abstract][Full Text] [Related]
22. Manipulation of hot electron flow on plasmonic nanodiodes fabricated by nanosphere lithography. Kang M; Park Y; Lee H; Lee C; Park JY Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33607643 [TBL] [Abstract][Full Text] [Related]
23. Hollow titanium nitride nanoshells for enhanced plasmon-driven hot electron generation and improved photocatalytic and photovoltaic applications. Moustafa S; Zayed MK; Daffallah KO; Shaalan NM; Rashad M; Fares H Phys Chem Chem Phys; 2024 Oct; 26(41):26416-26430. PubMed ID: 39391938 [TBL] [Abstract][Full Text] [Related]
24. Differentiating Plasmon-Enhanced Chemical Reactions on AgPd Hollow Nanoplates through Surface-Enhanced Raman Spectroscopy. Jiao S; Dai K; Besteiro LV; Gao H; Chen X; Wang W; Zhang Y; Liu C; Pérez-Juste I; Pérez-Juste J; Pastoriza-Santos I; Zheng G ACS Catal; 2024 May; 14(9):6799-6806. PubMed ID: 38721378 [TBL] [Abstract][Full Text] [Related]
25. Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots. Dong Y; Parobek D; Rossi D; Son DH Nano Lett; 2016 Nov; 16(11):7270-7275. PubMed ID: 27701861 [TBL] [Abstract][Full Text] [Related]
26. Plasmonic Nickel-TiO He S; Huang J; Goodsell JL; Angerhofer A; Wei WD Angew Chem Int Ed Engl; 2019 Apr; 58(18):6038-6041. PubMed ID: 30919543 [TBL] [Abstract][Full Text] [Related]
27. Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures. Kontoleta E; Tsoukala A; Askes SHC; Zoethout E; Oksenberg E; Agrawal H; Garnett EC ACS Appl Mater Interfaces; 2020 Aug; 12(32):35986-35994. PubMed ID: 32672034 [TBL] [Abstract][Full Text] [Related]
28. Hot Electrons in a Steady State: Interband vs Intraband Excitation of Plasmonic Gold. Lee A; Wu S; Yim JE; Zhao B; Sheldon MT ACS Nano; 2024 Jul; 18(29):19077-19085. PubMed ID: 38996185 [TBL] [Abstract][Full Text] [Related]
34. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Zheng BY; Zhao H; Manjavacas A; McClain M; Nordlander P; Halas NJ Nat Commun; 2015 Jul; 6():7797. PubMed ID: 26165521 [TBL] [Abstract][Full Text] [Related]
35. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity. Park JY; Kim SM; Lee H; Nedrygailov II Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684 [TBL] [Abstract][Full Text] [Related]
36. Hot electron-driven hydrogen evolution using anisotropic gold nanostructure assembled monolayer MoS Zhang P; Fujitsuka M; Majima T Nanoscale; 2017 Jan; 9(4):1520-1526. PubMed ID: 28067378 [TBL] [Abstract][Full Text] [Related]
37. Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites. Du L; Shi G; Zhao Y; Chen X; Sun H; Liu F; Cheng F; Xie W Chem Sci; 2019 Nov; 10(41):9605-9612. PubMed ID: 32055334 [TBL] [Abstract][Full Text] [Related]
38. Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications. Jiang R; Li B; Fang C; Wang J Adv Mater; 2014 Aug; 26(31):5274-309. PubMed ID: 24753398 [TBL] [Abstract][Full Text] [Related]
39. Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures. García de Arquer FP; Mihi A; Kufer D; Konstantatos G ACS Nano; 2013 Apr; 7(4):3581-8. PubMed ID: 23495769 [TBL] [Abstract][Full Text] [Related]
40. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials. Boerigter C; Aslam U; Linic S ACS Nano; 2016 Jun; 10(6):6108-15. PubMed ID: 27268233 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]