These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 38829921)

  • 41. Enhanced generation and anisotropic Coulomb scattering of hot electrons in an ultra-broadband plasmonic nanopatch metasurface.
    Sykes ME; Stewart JW; Akselrod GM; Kong XT; Wang Z; Gosztola DJ; Martinson ABF; Rosenmann D; Mikkelsen MH; Govorov AO; Wiederrecht GP
    Nat Commun; 2017 Oct; 8(1):986. PubMed ID: 29042536
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New Insights of Charge Transfer at Metal/Semiconductor Interfaces for Hot-Electron Generation Studied by Surface-Enhanced Raman Spectroscopy.
    Guan J; Wu S; Li L; Wang X; Ji W; Ozaki Y
    J Phys Chem Lett; 2022 Apr; 13(16):3571-3578. PubMed ID: 35426671
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO
    Lee C; Park Y; Park JY
    RSC Adv; 2019 Jun; 9(32):18371-18376. PubMed ID: 35515219
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct Observation of Photoinduced Charge Separation at Transition-Metal Nitride-Semiconductor Interfaces.
    Yu MW; Ishii S; Shinde SL; Tanjaya NK; Chen KP; Nagao T
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56562-56567. PubMed ID: 33259198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hot-electron-transfer enhancement for the efficient energy conversion of visible light.
    Yu S; Kim YH; Lee SY; Song HD; Yi J
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11203-7. PubMed ID: 25169852
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrically excited hot-electron dominated fluorescent emitters using individual Ga-doped ZnO microwires via metal quasiparticle film decoration.
    Liu Y; Jiang M; Zhang Z; Li B; Zhao H; Shan C; Shen D
    Nanoscale; 2018 Mar; 10(12):5678-5688. PubMed ID: 29532836
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient plasmon-hot electron conversion in Ag-CsPbBr
    Huang X; Li H; Zhang C; Tan S; Chen Z; Chen L; Lu Z; Wang X; Xiao M
    Nat Commun; 2019 Mar; 10(1):1163. PubMed ID: 30858372
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasmonic ZnO/Ag embedded structures as collecting layers for photogenerating electrons in solar hydrogen generation photoelectrodes.
    Chen HM; Chen CK; Tseng ML; Wu PC; Chang CM; Cheng LC; Huang HW; Chan TS; Huang DW; Liu RS; Tsai DP
    Small; 2013 Sep; 9(17):2926-36. PubMed ID: 23427053
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimal Geometry for Plasmonic Hot-Carrier Extraction in Metal-Semiconductor Nanocrystals.
    Melendez LV; Van Embden J; Connell TU; Duffy NW; Gómez DE
    ACS Nano; 2023 Mar; 17(5):4659-4666. PubMed ID: 36801851
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tunable electron and hole injection channels at plasmonic Al-TiO
    Ma J; Zhang X; Gao S
    Nanoscale; 2021 Sep; 13(33):14073-14080. PubMed ID: 34477688
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cooperation of Hot Holes and Surface Adsorbates in Plasmon-Driven Anisotropic Growth of Gold Nanostars.
    Guo W; Johnston-Peck AC; Zhang Y; Hu Y; Huang J; Wei WD
    J Am Chem Soc; 2020 Jun; 142(25):10921-10925. PubMed ID: 32484345
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Harvesting Sub-Bandgap IR Photons by Photothermionic Hot Electron Transfer in a Plasmonic p-n Junction.
    Yang W; Liu Y; Cullen DA; McBride JR; Lian T
    Nano Lett; 2021 May; 21(9):4036-4043. PubMed ID: 33877837
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hot plasmonic electron-driven catalytic reactions on patterned metal-insulator-metal nanostructures.
    Kim SM; Lee C; Goddeti KC; Park JY
    Nanoscale; 2017 Aug; 9(32):11667-11677. PubMed ID: 28776052
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrocatalytic glycerol oxidation enabled by surface plasmon polariton-induced hot carriers in Kretschmann configuration.
    Chung K; Zhu X; Zhuo X; Jang YJ; Choi CH; Lee JS; Kim SH; Kim M; Kim K; Kim D; Ham HC; Baba A; Wang J; Kim DH
    Nanoscale; 2019 Dec; 11(48):23234-23240. PubMed ID: 31782461
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of chemical interface damping on surface plasmon dephasing.
    Therrien AJ; Kale MJ; Yuan L; Zhang C; Halas NJ; Christopher P
    Faraday Discuss; 2019 May; 214(0):59-72. PubMed ID: 30810555
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plasmonic hole ejection involved in plasmon-induced charge separation.
    Tatsuma T; Nishi H
    Nanoscale Horiz; 2020 Mar; 5(4):597-606. PubMed ID: 32226974
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photoemission Enhancement of Plasmonic Hot Electrons by Au Antenna-Sensitizer Complexes.
    Fang Y; Gao N; Shao L
    ACS Nano; 2024 Jan; 18(4):3397-3404. PubMed ID: 38215310
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photo-plasmonic effect as the hot electron generation mechanism.
    Akbari-Moghanjoughi M
    Sci Rep; 2023 Jan; 13(1):589. PubMed ID: 36631539
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmon Field Effect Transistor for Plasmon to Electric Conversion and Amplification.
    Shokri Kojori H; Yun JH; Paik Y; Kim J; Anderson WA; Kim SJ
    Nano Lett; 2016 Jan; 16(1):250-4. PubMed ID: 26651529
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hot Hole Collection and Photoelectrochemical CO
    DuChene JS; Tagliabue G; Welch AJ; Cheng WH; Atwater HA
    Nano Lett; 2018 Apr; 18(4):2545-2550. PubMed ID: 29522350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.