These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 38829955)

  • 1. Recent Trends and Perspectives in Single-Entity Electrochemistry: A Review with Focus on a Water Splitting Reaction.
    Aruchamy G; Kim BK
    Crit Rev Anal Chem; 2024 Jun; ():1-17. PubMed ID: 38829955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalysts Based on Transition Metal Borides and Borates for the Oxygen Evolution Reaction.
    Cui L; Zhang W; Zheng R; Liu J
    Chemistry; 2020 Sep; 26(51):11661-11672. PubMed ID: 32320104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress of Transition Metal Compounds as Electrocatalysts for Electrocatalytic Water Splitting.
    Yu Y; Wang T; Zhang Y; You J; Hu F; Zhang H
    Chem Rec; 2023 Nov; 23(11):e202300109. PubMed ID: 37489551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research Progress of Oxygen Evolution Reaction Catalysts for Electrochemical Water Splitting.
    Liu Y; Zhou D; Deng T; He G; Chen A; Sun X; Yang Y; Miao P
    ChemSusChem; 2021 Dec; 14(24):5359-5383. PubMed ID: 34704377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen production from water electrolysis: role of catalysts.
    Wang S; Lu A; Zhong CJ
    Nano Converg; 2021 Feb; 8(1):4. PubMed ID: 33575919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Nanoparticle Electrochemistry through Immobilization and Collision.
    Anderson TJ; Zhang B
    Acc Chem Res; 2016 Nov; 49(11):2625-2631. PubMed ID: 27730817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking the Electrocatalytic Activity of a Single Palladium Nanoparticle for the Hydrogen Evolution Reaction.
    Chen M; Lu SM; Peng YY; Ding Z; Long YT
    Chemistry; 2021 Aug; 27(46):11799-11803. PubMed ID: 34101910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Self-Supported Layered Double Hydroxides for Oxygen Evolution Reaction.
    Wu L; Yu L; Xiao X; Zhang F; Song S; Chen S; Ren Z
    Research (Wash D C); 2020; 2020():3976278. PubMed ID: 32159161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives.
    Ghosh S; Basu RN
    Nanoscale; 2018 Jun; 10(24):11241-11280. PubMed ID: 29897365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review.
    Bodhankar PM; Sarawade PB; Kumar P; Vinu A; Kulkarni AP; Lokhande CD; Dhawale DS
    Small; 2022 May; 18(21):e2107572. PubMed ID: 35285140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts.
    Raveendran A; Chandran M; Dhanusuraman R
    RSC Adv; 2023 Jan; 13(6):3843-3876. PubMed ID: 36756592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting.
    Wang J; Cui W; Liu Q; Xing Z; Asiri AM; Sun X
    Adv Mater; 2016 Jan; 28(2):215-30. PubMed ID: 26551487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing MOF Nanoarchitectures for Electrochemical Water Splitting.
    Zhang B; Zheng Y; Ma T; Yang C; Peng Y; Zhou Z; Zhou M; Li S; Wang Y; Cheng C
    Adv Mater; 2021 Apr; 33(17):e2006042. PubMed ID: 33749910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in the role of MXene based hybrid architectures as electrocatalysts for water splitting.
    Sajid IH; Iqbal MZ; Rizwan S
    RSC Adv; 2024 Feb; 14(10):6823-6847. PubMed ID: 38410361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Dimensional Earth-Abundant Nanomaterials for Water-Splitting Electrocatalysts.
    Li J; Zheng G
    Adv Sci (Weinh); 2017 Mar; 4(3):1600380. PubMed ID: 28331791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MOF-derived nanoarrays as advanced electrocatalysts for water splitting.
    Zhang Y; Qi L
    Nanoscale; 2022 Sep; 14(34):12196-12218. PubMed ID: 35968835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts.
    Wu T; Dong C; Sun D; Huang F
    Nanoscale; 2021 Jan; 13(3):1581-1595. PubMed ID: 33444426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Oxidation of AuNi Heterodimers to Achieve High Activities toward Hydrogen/Oxygen Evolution and Oxygen Reduction Reactions.
    Ni B; He P; Liao W; Chen S; Gu L; Gong Y; Wang K; Zhuang J; Song L; Zhou G; Wang X
    Small; 2018 Apr; 14(14):e1703749. PubMed ID: 29468840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.