These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38830009)

  • 21. tRNA Dissociation from EF-Tu after GTP Hydrolysis: Primary Steps and Antibiotic Inhibition.
    Warias M; Grubmüller H; Bock LV
    Biophys J; 2020 Jan; 118(1):151-161. PubMed ID: 31711607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA.
    Nissen P; Thirup S; Kjeldgaard M; Nyborg J
    Structure; 1999 Feb; 7(2):143-56. PubMed ID: 10368282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Properties of isolated domains of the elongation factor Tu from Thermus thermophilus HB8.
    Nock S; Grillenbeck N; Ahmadian MR; Ribeiro S; Kreutzer R; Sprinzl M
    Eur J Biochem; 1995 Nov; 234(1):132-9. PubMed ID: 8529632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined Chemical Modification and Collision Induced Unfolding Using Native Ion Mobility-Mass Spectrometry Provides Insights into Protein Gas-Phase Structure.
    Al-Jabiry A; Palmer M; Langridge J; Bellamy-Carter J; Robinson D; Oldham NJ
    Chemistry; 2021 Oct; 27(55):13783-13792. PubMed ID: 34289194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorylation decelerates conformational dynamics in bacterial translation elongation factors.
    Talavera A; Hendrix J; Versées W; Jurėnas D; Van Nerom K; Vandenberk N; Singh RK; Konijnenberg A; De Gieter S; Castro-Roa D; Barth A; De Greve H; Sobott F; Hofkens J; Zenkin N; Loris R; Garcia-Pino A
    Sci Adv; 2018 Mar; 4(3):eaap9714. PubMed ID: 29546243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the Molecular Basis of Cofactor Affinity and Conformational Dynamics of
    Kumar N; Garg P
    J Phys Chem B; 2022 Feb; 126(7):1447-1461. PubMed ID: 35167282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study.
    Dell VA; Miller DL; Johnson AE
    Biochemistry; 1990 Feb; 29(7):1757-63. PubMed ID: 2110000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ternary complex of EF-Tu and its role in protein biosynthesis.
    Clark BF; Nyborg J
    Curr Opin Struct Biol; 1997 Feb; 7(1):110-6. PubMed ID: 9032056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of EF-Tu with EF-Ts: substitution of His-118 in EF-Tu destabilizes the EF-Tu x EF-Ts complex but does not prevent EF-Ts from stimulating the release of EF-Tu-bound GDP.
    Jonák J; Anborgh PH; Parmeggiani A
    FEBS Lett; 1998 Jan; 422(2):189-92. PubMed ID: 9490003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorylation of elongation factor Tu prevents ternary complex formation.
    Alexander C; Bilgin N; Lindschau C; Mesters JR; Kraal B; Hilgenfeld R; Erdmann VA; Lippmann C
    J Biol Chem; 1995 Jun; 270(24):14541-7. PubMed ID: 7782317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elongation Factor Tu's Nucleotide Binding Is Governed by a Thermodynamic Landscape Unique among Bacterial Translation Factors.
    Girodat D; Mercier E; Gzyl KE; Wieden HJ
    J Am Chem Soc; 2019 Jul; 141(26):10236-10246. PubMed ID: 31058500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation.
    Kjeldgaard M; Nissen P; Thirup S; Nyborg J
    Structure; 1993 Sep; 1(1):35-50. PubMed ID: 8069622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of activation of elongation factor Tu by ribosome: catalytic histidine activates GTP by protonation.
    Aleksandrov A; Field M
    RNA; 2013 Sep; 19(9):1218-25. PubMed ID: 23864225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elongation Factor Tu Switch I Element is a Gate for Aminoacyl-tRNA Selection.
    Girodat D; Blanchard SC; Wieden HJ; Sanbonmatsu KY
    J Mol Biol; 2020 Apr; 432(9):3064-3077. PubMed ID: 32061931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Collision Induced Unfolding and Electron Capture Dissociation of Native-like Protein Ions.
    Gadkari VV; Ramírez CR; Vallejo DD; Kurulugama RT; Fjeldsted JC; Ruotolo BT
    Anal Chem; 2020 Dec; 92(23):15489-15496. PubMed ID: 33166123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antibiotics MDL 62,879 and kirromycin bind to distinct and independent sites of elongation factor Tu (EF-Tu).
    Landini P; Soffientini A; Monti F; Lociuro S; Marzorati E; Islam K
    Biochemistry; 1996 Dec; 35(48):15288-94. PubMed ID: 8952479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct evidence of an elongation factor-Tu/Ts·GTP·Aminoacyl-tRNA quaternary complex.
    Burnett BJ; Altman RB; Ferguson A; Wasserman MR; Zhou Z; Blanchard SC
    J Biol Chem; 2014 Aug; 289(34):23917-27. PubMed ID: 24990941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dimers of Thermus thermophilus elongation factor Ts are required for its function as a nucleotide exchange factor of elongation factor Tu.
    Nesper M; Nock S; Sedlák E; Antalík M; Podhradský D; Sprinzl M
    Eur J Biochem; 1998 Jul; 255(1):81-6. PubMed ID: 9692904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Conformational Change in Elongation Factor Tu Involves Separation of Its Domains.
    Lai J; Ghaemi Z; Luthey-Schulten Z
    Biochemistry; 2017 Nov; 56(45):5972-5979. PubMed ID: 29045140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.