These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38830143)

  • 1. ModiFinder: Tandem Mass Spectral Alignment Enables Structural Modification Site Localization.
    Shahneh MRZ; Strobel M; Vitale GA; Geibel C; Abiead YE; Garg N; Wagner B; Forchhammer K; Aron A; Phelan VV; Petras D; Wang M
    J Am Soc Mass Spectrom; 2024 Jun; ():. PubMed ID: 38830143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [A novel method for efficient screening and annotation of important pathway-associated metabolites based on the modified metabolome and probe molecules].
    Li Z; Zheng F; Xia Y; Zhang X; Wang X; Zhao C; Zhao X; Lu X; Xu G
    Se Pu; 2022 Sep; 40(9):788-796. PubMed ID: 36156625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TransExION: a transformer based explainable similarity metric for comparing IONS in tandem mass spectrometry.
    Bui-Thi D; Liu Y; Lippens JL; Laukens K; De Vijlder T
    J Cheminform; 2024 May; 16(1):61. PubMed ID: 38807166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrieving and Utilizing Hypothetical Neutral Losses from Tandem Mass Spectra for Spectral Similarity Analysis and Unknown Metabolite Annotation.
    Xing S; Hu Y; Yin Z; Liu M; Tang X; Fang M; Huan T
    Anal Chem; 2020 Nov; 92(21):14476-14483. PubMed ID: 33076659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network Topology Evaluation and Transitive Alignments for Molecular Networking.
    Wang X; Strobel M; Aron AT; Phelan VV; Acharya DD; Brown CJ; Clevenger K; Hu J; Kretsch A; Mahood EH; Menegatti C; Xiong Q; Wang M
    J Am Soc Mass Spectrom; 2024 Sep; 35(9):2165-2175. PubMed ID: 39133821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similarity of High-Resolution Tandem Mass Spectrometry Spectra of Structurally Related Micropollutants and Transformation Products.
    Schollée JE; Schymanski EL; Stravs MA; Gulde R; Thomaidis NS; Hollender J
    J Am Soc Mass Spectrom; 2017 Dec; 28(12):2692-2704. PubMed ID: 28952028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SIMILE enables alignment of tandem mass spectra with statistical significance.
    Treen DGC; Wang M; Xing S; Louie KB; Huan T; Dorrestein PC; Northen TR; Bowen BP
    Nat Commun; 2022 May; 13(1):2510. PubMed ID: 35523965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Cosine, Modified Cosine, and Neutral Loss Based Spectrum Alignment For Discovery of Structurally Related Molecules.
    Bittremieux W; Schmid R; Huber F; van der Hooft JJJ; Wang M; Dorrestein PC
    J Am Soc Mass Spectrom; 2022 Sep; 33(9):1733-1744. PubMed ID: 35960544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Fragment-Ion and Neutral-Loss Matching during Mass Spectral Library Searching: A New General Purpose Algorithm Applicable to Illicit Drug Identification.
    Moorthy AS; Wallace WE; Kearsley AJ; Tchekhovskoi DV; Stein SE
    Anal Chem; 2017 Dec; 89(24):13261-13268. PubMed ID: 29156120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAW: the reproducible Metabolome Annotation Workflow for untargeted tandem mass spectrometry.
    Zulfiqar M; Gadelha L; Steinbeck C; Sorokina M; Peters K
    J Cheminform; 2023 Mar; 15(1):32. PubMed ID: 36871033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous screening of targeted and non-targeted contaminants using an LC-QTOF-MS system and automated MS/MS library searching.
    Herrera-Lopez S; Hernando MD; García-Calvo E; Fernández-Alba AR; Ulaszewska MM
    J Mass Spectrom; 2014 Sep; 49(9):878-93. PubMed ID: 25230185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-Ring Fragmentation Patterns in the Tandem Mass Spectra of Underivatized Sialylated Oligosaccharides and Their Special Suitability for Spectrum Library Searching.
    De Leoz MLA; Simón-Manso Y; Woods RJ; Stein SE
    J Am Soc Mass Spectrom; 2019 Mar; 30(3):426-438. PubMed ID: 30565163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification.
    Ji H; Xu Y; Lu H; Zhang Z
    Anal Chem; 2019 May; 91(9):5629-5637. PubMed ID: 30990670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Open Search of Peptide Glycation Products from Tandem Mass Spectra.
    Berger MT; Hemmler D; Diederich P; Rychlik M; Marshall JW; Schmitt-Kopplin P
    Anal Chem; 2022 Apr; 94(15):5953-5961. PubMed ID: 35389626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MS2Analyzer: A software for small molecule substructure annotations from accurate tandem mass spectra.
    Ma Y; Kind T; Yang D; Leon C; Fiehn O
    Anal Chem; 2014 Nov; 86(21):10724-31. PubMed ID: 25263576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weighting Low-Intensity MS/MS Ions and
    Engler Hart C; Kind T; Dorrestein PC; Healey D; Domingo-Fernández D
    J Am Soc Mass Spectrom; 2024 Feb; 35(2):266-274. PubMed ID: 38271611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolite identification using automated comparison of high-resolution multistage mass spectral trees.
    Rojas-Cherto M; Peironcely JE; Kasper PT; van der Hooft JJ; de Vos RC; Vreeken R; Hankemeier T; Reijmers T
    Anal Chem; 2012 Jul; 84(13):5524-34. PubMed ID: 22612383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MS2DeepScore: a novel deep learning similarity measure to compare tandem mass spectra.
    Huber F; van der Burg S; van der Hooft JJJ; Ridder L
    J Cheminform; 2021 Oct; 13(1):84. PubMed ID: 34715914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification.
    Li Y; Kind T; Folz J; Vaniya A; Mehta SS; Fiehn O
    Nat Methods; 2021 Dec; 18(12):1524-1531. PubMed ID: 34857935
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.