These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38830292)

  • 41. Integrated LTCC packaging for use in biomedical devices.
    Chlebowski AL; Chow EY; Ellison C; Irazoqui PP
    Biomed Mater Eng; 2012; 22(6):361-72. PubMed ID: 23114465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. All-Solid-State Thin Film Lithium/Lithium-Ion Microbatteries for Powering the Internet of Things.
    Xia Q; Zan F; Zhang Q; Liu W; Li Q; He Y; Hua J; Liu J; Xu J; Wang J; Wu C; Xia H
    Adv Mater; 2023 Jan; 35(2):e2200538. PubMed ID: 35962983
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biocompatible Material-Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems.
    Liu G; Lv Z; Batool S; Li MZ; Zhao P; Guo L; Wang Y; Zhou Y; Han ST
    Small; 2023 Jul; 19(27):e2207879. PubMed ID: 37009995
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simulative and experimental research on wireless power transmission technique in implantable medical device.
    Yu Y; Hao H; Wang W; Li L
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():923-6. PubMed ID: 19963736
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfabricated bioelectrodes on self-expandable NiTi thin film devices for implants and diagnostic instruments.
    Chluba C; Siemsen K; Bechtold C; Zamponi C; Selhuber-Unkel C; Quandt E; Lima de Miranda R
    Biosens Bioelectron; 2020 Apr; 153():112034. PubMed ID: 31989946
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Power Approaches for Implantable Medical Devices.
    Ben Amar A; Kouki AB; Cao H
    Sensors (Basel); 2015 Nov; 15(11):28889-914. PubMed ID: 26580626
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-Sustainable Biomedical Devices Powered by RF Energy: A Review.
    Yahya Alkhalaf H; Yazed Ahmad M; Ramiah H
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080825
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Patchable and Implantable 2D Nanogenerator.
    Han SA; Lee JH; Seung W; Lee J; Kim SW; Kim JH
    Small; 2021 Mar; 17(9):e1903519. PubMed ID: 31588681
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Soft mechanical sensors for wearable and implantable applications.
    Papani R; Li Y; Wang S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(3):e1961. PubMed ID: 38723798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Fully Biodegradable Battery for Self-Powered Transient Implants.
    Huang X; Wang D; Yuan Z; Xie W; Wu Y; Li R; Zhao Y; Luo D; Cen L; Chen B; Wu H; Xu H; Sheng X; Zhang M; Zhao L; Yin L
    Small; 2018 Jul; 14(28):e1800994. PubMed ID: 29806124
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recording brain activity wirelessly. Inductive powering in miniature implantable neural recording devices.
    Irazoqui PP; Mody I; Judy JW
    IEEE Eng Med Biol Mag; 2005; 24(6):48-54. PubMed ID: 16382805
    [No Abstract]   [Full Text] [Related]  

  • 52. Frequency Splitting Analysis and Compensation Method for Inductive Wireless Powering of Implantable Biosensors.
    Schormans M; Valente V; Demosthenous A
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527174
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Batteries Used in Active Implantable Medical Devices].
    Ma B; Hao H; Li L
    Zhongguo Yi Liao Qi Xie Za Zhi; 2015 Mar; 39(3):201-5. PubMed ID: 26524787
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application.
    Rahimi Sardo F; Rayegani A; Matin Nazar A; Balaghiinaloo M; Saberian M; Mohsan SAH; Alsharif MH; Cho HS
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functionalized Organic Thin Film Transistors for Biosensing.
    Wang N; Yang A; Fu Y; Li Y; Yan F
    Acc Chem Res; 2019 Feb; 52(2):277-287. PubMed ID: 30620566
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.
    Bettinger CJ
    Trends Biotechnol; 2015 Oct; 33(10):575-585. PubMed ID: 26403162
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare.
    Lu T; Ji S; Jin W; Yang Q; Luo Q; Ren TL
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics.
    Song HS; Kwon OS; Kim JH; Conde J; Artzi N
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):187-200. PubMed ID: 27020065
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Ceramic-Electrolyte Glucose Fuel Cell for Implantable Electronics.
    Simons P; Schenk SA; Gysel MA; Olbrich LF; Rupp JLM
    Adv Mater; 2022 Jun; 34(24):e2109075. PubMed ID: 35384081
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In-Vivo Validation of Fully Implantable Multi-Panel Devices for Remote Monitoring of Metabolism.
    Baj-Rossi C; Cavallini A; Kilinc EG; Stradolini F; Rezzonico Jost T; Proietti M; De Micheli G; Grassi F; Dehollain C; Carrara S
    IEEE Trans Biomed Circuits Syst; 2016 Oct; 10(5):955-962. PubMed ID: 28113177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.