These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38830325)

  • 1. Particle filter for fatigue crack growth prediction using SH0 wave on-line monitoring.
    Li Z; Jia J; Wang M; Gu M; Tu S
    Ultrasonics; 2024 May; 142():107355. PubMed ID: 38830325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lamb Wave-Minimum Sampling Variance Particle Filter-Based Fatigue Crack Prognosis.
    Yang W; Gao P
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method.
    Chen J; Yuan S; Qiu L; Cai J; Yang W
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26950130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-line prognosis of fatigue crack propagation based on Gaussian weight-mixture proposal particle filter.
    Chen J; Yuan S; Qiu L; Wang H; Yang W
    Ultrasonics; 2018 Jan; 82():134-144. PubMed ID: 28803161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction Between SH
    Combaniere J; Cawley P; McAughey K; Giese J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jan; 66(1):119-128. PubMed ID: 30334793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncertainty Modeling of Fatigue Crack Growth and Probabilistic Life Prediction for Welded Joints of Nuclear Stainless Steel.
    Chang H; Shen M; Yang X; Hou J
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32708921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical Dynamic Bayesian Network-Based Fatigue Crack Propagation Modeling Considering Initial Defects.
    Xu Y; Zhu B; Zhang Z; Chen J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directivity of quasi-SH0 modes in cubic anisotropic media.
    Wang J; Zhang Y; Zhang Z; Xue C; Li B
    Ultrasonics; 2023 Sep; 134():107082. PubMed ID: 37379761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation and reception of shear horizontal waves using the synthetic face-shear mode of a thickness-poled piezoelectric wafer.
    Huan Q; Miao H; Li F
    Ultrasonics; 2018 May; 86():20-27. PubMed ID: 29407278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Dimensional Uniform Initialization Gaussian Mixture Model for Spar Crack Quantification under Uncertainty.
    Xu Q; Yuan S; Huang T
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
    Zhang Z; Yang G; Hu K
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical and Experimental Study of Fatigue-Crack-Growth AE Signals in Thin Sheet Metals.
    Joseph R; Giurgiutiu V
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue-Crack Detection and Monitoring through the Scattered-Wave Two-Dimensional Cross-Correlation Imaging Method Using Piezoelectric Transducers.
    Xiao W; Yu L; Joseph R; Giurgiutiu V
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of fatigue crack closure effect on the evaluation of edge cracks with the fundamental mode of edge waves.
    Zhu H; Kotousov A; Tai Ng C
    Ultrasonics; 2024 Mar; 138():107266. PubMed ID: 38394741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model assessment method for predicting structural fatigue life using Lamb waves.
    Wang D; He J; Guan X; Yang J; Zhang W
    Ultrasonics; 2018 Mar; 84():319-328. PubMed ID: 29207332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new omnidirectional shear horizontal wave transducer using face-shear (d
    Miao H; Huan Q; Wang Q; Li F
    Ultrasonics; 2017 Feb; 74():167-173. PubMed ID: 27816871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristic Tearing Energy and Fatigue Crack Propagation of Filled Natural Rubber.
    Rong J; Yang J; Huang Y; Luo W; Hu X
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A variable-frequency bidirectional shear horizontal (SH) wave transducer based on dual face-shear (d
    Miao H; Huan Q; Li F; Kang G
    Ultrasonics; 2018 Sep; 89():13-21. PubMed ID: 29709875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active Monitoring of Fatigue Crack in the Weld Zone of Bogie Frames Using Ultrasonic Guided Waves.
    Yan J; Jin H; Sun H; Qing X
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31370343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.