BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38830626)

  • 41. Structural basis for hyperpolarization-dependent opening of human HCN1 channel.
    Burtscher V; Mount J; Huang J; Cowgill J; Chang Y; Bickel K; Chen J; Yuan P; Chanda B
    Nat Commun; 2024 Jun; 15(1):5216. PubMed ID: 38890331
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Resolution Cryoelectron Microscopy Structure of the Cyclic Nucleotide-Modulated Potassium Channel MloK1 in a Lipid Bilayer.
    Kowal J; Biyani N; Chami M; Scherer S; Rzepiela AJ; Baumgartner P; Upadhyay V; Nimigean CM; Stahlberg H
    Structure; 2018 Jan; 26(1):20-27.e3. PubMed ID: 29249605
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Colocalization of hyperpolarization-activated, cyclic nucleotide-gated channel subunits in rat retinal ganglion cells.
    Stradleigh TW; Ogata G; Partida GJ; Oi H; Greenberg KP; Krempely KS; Ishida AT
    J Comp Neurol; 2011 Sep; 519(13):2546-73. PubMed ID: 21456027
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism for the inhibition of the cAMP dependence of HCN ion channels by the auxiliary subunit TRIP8b.
    Bankston JR; DeBerg HA; Stoll S; Zagotta WN
    J Biol Chem; 2017 Oct; 292(43):17794-17803. PubMed ID: 28864772
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional and structural characterization of interactions between opposite subunits in HCN pacemaker channels.
    Kondapuram M; Frieg B; Yüksel S; Schwabe T; Sattler C; Lelle M; Schweinitz A; Schmauder R; Benndorf K; Gohlke H; Kusch J
    Commun Biol; 2022 May; 5(1):430. PubMed ID: 35534535
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness.
    Lolicato M; Bucchi A; Arrigoni C; Zucca S; Nardini M; Schroeder I; Simmons K; Aquila M; DiFrancesco D; Bolognesi M; Schwede F; Kashin D; Fishwick CW; Johnson AP; Thiel G; Moroni A
    Nat Chem Biol; 2014 Jun; 10(6):457-62. PubMed ID: 24776929
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A leucine zipper motif essential for gating of hyperpolarization-activated channels.
    Wemhöner K; Silbernagel N; Marzian S; Netter MF; Rinné S; Stansfeld PJ; Decher N
    J Biol Chem; 2012 Nov; 287(48):40150-60. PubMed ID: 23048023
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Minimal molecular determinants of isoform-specific differences in efficacy in the HCN channel family.
    Alvarez-Baron CP; Klenchin VA; Chanda B
    J Gen Physiol; 2018 Aug; 150(8):1203-1213. PubMed ID: 29980633
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activation gating in HCN2 channels.
    Hummert S; Thon S; Eick T; Schmauder R; Schulz E; Benndorf K
    PLoS Comput Biol; 2018 Mar; 14(3):e1006045. PubMed ID: 29565972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Different roles for the cyclic nucleotide binding domain and amino terminus in assembly and expression of hyperpolarization-activated, cyclic nucleotide-gated channels.
    Proenza C; Tran N; Angoli D; Zahynacz K; Balcar P; Accili EA
    J Biol Chem; 2002 Aug; 277(33):29634-42. PubMed ID: 12034718
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gating mechanism of hyperpolarization-activated HCN pacemaker channels.
    Ramentol R; Perez ME; Larsson HP
    Nat Commun; 2020 Mar; 11(1):1419. PubMed ID: 32184399
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural insights into the mechanisms of CNBD channel function.
    James ZM; Zagotta WN
    J Gen Physiol; 2018 Feb; 150(2):225-244. PubMed ID: 29233886
    [TBL] [Abstract][Full Text] [Related]  

  • 53. cAMP Modulation of the cytoplasmic domain in the HCN2 channel investigated by molecular simulations.
    Berrera M; Pantano S; Carloni P
    Biophys J; 2006 May; 90(10):3428-33. PubMed ID: 16500960
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Elementary functional properties of single HCN2 channels.
    Thon S; Schmauder R; Benndorf K
    Biophys J; 2013 Oct; 105(7):1581-9. PubMed ID: 24094399
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A high affinity switch for cAMP in the HCN pacemaker channels.
    Porro A; Saponaro A; Castelli R; Introini B; Hafez Alkotob A; Ranjbari G; Enke U; Kusch J; Benndorf K; Santoro B; DiFrancesco D; Thiel G; Moroni A
    Nat Commun; 2024 Jan; 15(1):843. PubMed ID: 38287019
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase.
    Zong X; Eckert C; Yuan H; Wahl-Schott C; Abicht H; Fang L; Li R; Mistrik P; Gerstner A; Much B; Baumann L; Michalakis S; Zeng R; Chen Z; Biel M
    J Biol Chem; 2005 Oct; 280(40):34224-32. PubMed ID: 16079136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural changes during HCN channel gating defined by high affinity metal bridges.
    Kwan DC; Prole DL; Yellen G
    J Gen Physiol; 2012 Sep; 140(3):279-91. PubMed ID: 22930802
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A KcsA/MloK1 chimeric ion channel has lipid-dependent ligand-binding energetics.
    McCoy JG; Rusinova R; Kim DM; Kowal J; Banerjee S; Jaramillo Cartagena A; Thompson AN; Kolmakova-Partensky L; Stahlberg H; Andersen OS; Nimigean CM
    J Biol Chem; 2014 Apr; 289(14):9535-46. PubMed ID: 24515111
    [TBL] [Abstract][Full Text] [Related]  

  • 59. HCN channels: structure, cellular regulation and physiological function.
    Wahl-Schott C; Biel M
    Cell Mol Life Sci; 2009 Feb; 66(3):470-94. PubMed ID: 18953682
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Single-channel properties support a potential contribution of hyperpolarization-activated cyclic nucleotide-gated channels and If to cardiac arrhythmias.
    Michels G; Er F; Khan I; Südkamp M; Herzig S; Hoppe UC
    Circulation; 2005 Feb; 111(4):399-404. PubMed ID: 15687126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.