BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38830805)

  • 41. High fitness areas drive the aggregation of the sea urchin
    Yu Y; Sun J; Chang Y; Zhao C
    PeerJ; 2022; 10():e12820. PubMed ID: 35111413
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kelp and sea urchin settlement mediated by biotic interactions with benthic coralline algal species.
    Twist BA; Mazel F; Zaklan Duff S; Lemay MA; Pearce CM; Martone PT
    J Phycol; 2024 Apr; 60(2):363-379. PubMed ID: 38147464
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of fasting on spine regeneration and bacteremia in the purple sea urchin Strongylocentrotus purpuratus.
    Scholnick DA; Winslow AE
    PLoS One; 2020; 15(2):e0228711. PubMed ID: 32053660
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Consequences of kelp forest ecosystem shifts and predictors of persistence through multiple stressors.
    Smith JG; Malone D; Carr MH
    Proc Biol Sci; 2024 Feb; 291(2016):20232749. PubMed ID: 38320605
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Predation cues rather than resource availability promote cryptic behaviour in a habitat-forming sea urchin.
    Spyksma AJ; Taylor RB; Shears NT
    Oecologia; 2017 Mar; 183(3):821-829. PubMed ID: 28091726
    [TBL] [Abstract][Full Text] [Related]  

  • 46. More severe disturbance regimes drive the shift of a kelp forest to a sea urchin barren in south-eastern Australia.
    Carnell PE; Keough MJ
    Sci Rep; 2020 Jul; 10(1):11272. PubMed ID: 32647344
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago.
    Reisewitz SE; Estes JA; Simenstad CA
    Oecologia; 2006 Jan; 146(4):623-31. PubMed ID: 16193296
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens.
    Rogers-Bennett L; Catton CA
    Sci Rep; 2019 Oct; 9(1):15050. PubMed ID: 31636286
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trophic cascades result in large-scale coralline algae loss through differential grazer effects.
    O'Leary JK; McClanahan TR
    Ecology; 2010 Dec; 91(12):3584-97. PubMed ID: 21302830
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Long-term study of behaviors of two cohabiting sea urchin species,
    Zhadan PM; Vaschenko MA
    PeerJ; 2019; 7():e8087. PubMed ID: 31772840
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interactions between sea urchin grazing and prey diversity on temperate rocky reef communities.
    Byrnes JE; Cardinale BJ; Reed DC
    Ecology; 2013 Jul; 94(7):1636-46. PubMed ID: 23951723
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Urchin grazing of kelp gametophytes in warming oceans.
    Veenhof RJ; Coleman MA; Champion C; Dworjanyn SA
    J Phycol; 2023 Oct; 59(5):838-855. PubMed ID: 37432133
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Behavioral responses across a mosaic of ecosystem states restructure a sea otter-urchin trophic cascade.
    Smith JG; Tomoleoni J; Staedler M; Lyon S; Fujii J; Tinker MT
    Proc Natl Acad Sci U S A; 2021 Mar; 118(11):. PubMed ID: 33836567
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbon export is facilitated by sea urchins transforming kelp detritus.
    Filbee-Dexter K; Pedersen MF; Fredriksen S; Norderhaug KM; Rinde E; Kristiansen T; Albretsen J; Wernberg T
    Oecologia; 2020 Jan; 192(1):213-225. PubMed ID: 31828530
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Echinoderms display morphological and behavioural phenotypic plasticity in response to their trophic environment.
    Hughes AD; Brunner L; Cook EJ; Kelly MS; Wilson B
    PLoS One; 2012; 7(8):e41243. PubMed ID: 22870211
    [TBL] [Abstract][Full Text] [Related]  

  • 56. After 15 years, no evidence for trophic cascades in marine protected areas.
    Malakhoff KD; Miller RJ
    Proc Biol Sci; 2021 Feb; 288(1945):20203061. PubMed ID: 33593185
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Foraging behavior of the sea urchin Mesocentrotus nudus exposed to conspecific alarm cues in various conditions.
    Chi X; Yang M; Hu F; Huang X; Yu Y; Chang Y; Wang Q; Zhao C
    Sci Rep; 2021 Aug; 11(1):15654. PubMed ID: 34341391
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The challenge of managing the commercial harvesting of the sea urchin
    Farina S; Baroli M; Brundu R; Conforti A; Cucco A; De Falco G; Guala I; Guerzoni S; Massaro G; Quattrocchi G; Romagnoni G; Brambilla W
    PeerJ; 2020; 8():e10093. PubMed ID: 33083138
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Grazer behaviour can regulate large-scale patterning of community states.
    Karatayev VA; Baskett ML; Kushner DJ; Shears NT; Caselle JE; Boettiger C
    Ecol Lett; 2021 Sep; 24(9):1917-1929. PubMed ID: 34218512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trophic cascade in a marine protected area with artificial reefs: spiny lobster predation mitigates urchin barrens.
    Kawamata S; Taino S
    Ecol Appl; 2021 Sep; 31(6):e02364. PubMed ID: 33899297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.