These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38830805)

  • 81. Spatial vision in the purple sea urchin Strongylocentrotus purpuratus (Echinoidea).
    Yerramilli D; Johnsen S
    J Exp Biol; 2010 Jan; 213(2):249-55. PubMed ID: 20038658
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Influence of environmentally relevant concentrations of Zn, Cd and Ni and their binary mixtures on metal uptake, bioaccumulation and development in larvae of the purple sea urchin Strongylocentrotus purpuratus.
    Nogueira LS; Domingos-Moreira FXV; Klein RD; Bianchini A; Wood CM
    Aquat Toxicol; 2021 Jan; 230():105709. PubMed ID: 33296850
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Cascading effects of ocean acidification in a rocky subtidal community.
    Asnaghi V; Chiantore M; Mangialajo L; Gazeau F; Francour P; Alliouane S; Gattuso JP
    PLoS One; 2013; 8(4):e61978. PubMed ID: 23613994
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Interaction among sea urchins in response to food cues.
    Sun J; Zhao Z; Zhao C; Yu Y; Ding P; Ding J; Yang M; Chi X; Hu F; Chang Y
    Sci Rep; 2021 May; 11(1):9985. PubMed ID: 33976309
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests.
    Hamilton SL; Caselle JE
    Proc Biol Sci; 2015 Jan; 282(1799):20141817. PubMed ID: 25500572
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Marine heatwave temperatures enhance larval performance but are meditated by paternal thermal history and inter-individual differences in the purple sea urchin,
    Leach TS; Hofmann GE
    Front Physiol; 2023; 14():1230590. PubMed ID: 37601631
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Coastal fish assemblages and predation pressure in northern-central Chilean
    Riquelme-Pérez N; Musrri CA; Stotz WB; Cerda O; Pino-Olivares O; Thiel M
    PeerJ; 2019; 7():e6964. PubMed ID: 31223523
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The sea urchin Paracentrotus lividus as a bioeroder of plastic.
    Porter A; Smith KE; Lewis C
    Sci Total Environ; 2019 Nov; 693():133621. PubMed ID: 31634994
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Microbial Composition and Genes for Key Metabolic Attributes in the Gut Digesta of Sea Urchins
    Hakim JA; Green GBH; Watts SA; Crowley MR; Morrow CD; Bej AK
    Curr Issues Mol Biol; 2021 Aug; 43(2):978-995. PubMed ID: 34563039
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Short-term variation of abundance of the purple sea urchin, Paracentrotus lividus (Lamarck, 1816), subject to harvesting in northern Portugal.
    Bertocci I; Blanco A; Franco JN; Fernández-Boo S; Arenas F
    Mar Environ Res; 2018 Oct; 141():247-254. PubMed ID: 30249457
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Bald sea urchin disease shifts the surface microbiome on purple sea urchins in an aquarium.
    Shaw CG; Pavloudi C; Barela Hudgell MA; Crow RS; Saw JH; Pyron RA; Smith LC
    Pathog Dis; 2023 Jan; 81():. PubMed ID: 37715299
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.
    Ling SD; Johnson CR; Frusher SD; Ridgway KR
    Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22341-5. PubMed ID: 20018706
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The effects of sheephead (Semicossyphus pulcher) predation on red sea urchin (Strongylocentrotus franciscanus) populations: an experimental analysis.
    Cowen RK
    Oecologia; 1983 May; 58(2):249-255. PubMed ID: 28310586
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests.
    Reed DC; Rassweiler A; Carr MH; Cavanaugh KC; Malone DP; Siegel DA
    Ecology; 2011 Nov; 92(11):2108-16. PubMed ID: 22164835
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Exploring indirect effects of a classic trophic cascade between urchins and kelp on zooplankton and whales.
    Hildebrand L; Derville S; Hildebrand I; Torres LG
    Sci Rep; 2024 Apr; 14(1):9815. PubMed ID: 38684814
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Marine reserves reduce risk of climate-driven phase shift by reinstating size- and habitat-specific trophic interactions.
    Ling SD; Johnson CR
    Ecol Appl; 2012 Jun; 22(4):1232-45. PubMed ID: 22827131
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Alien marine fishes deplete algal biomass in the Eastern Mediterranean.
    Sala E; Kizilkaya Z; Yildirim D; Ballesteros E
    PLoS One; 2011 Feb; 6(2):e17356. PubMed ID: 21364943
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Long-term marine protection enhances kelp forest ecosystem stability.
    Peleg O; Blain CO; Shears NT
    Ecol Appl; 2023 Oct; 33(7):e2895. PubMed ID: 37282356
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Marine reserves demonstrate top-down control of community structure on temperate reefs.
    Shears NT; Babcock RC
    Oecologia; 2002 Jun; 132(1):131-142. PubMed ID: 28547276
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Carryover effects of long-term high water temperatures on fitness-related traits of the offspring of the sea urchin Strongylocentrotus intermedius.
    Chi X; Shi D; Ma Z; Hu F; Sun J; Huang X; Zhang L; Chang Y; Zhao C
    Mar Environ Res; 2021 Jul; 169():105371. PubMed ID: 34044285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.