These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38830906)

  • 61. Deleterious mutations predicted in the sorghum (Sorghum bicolor) Maturity (Ma) and Dwarf (Dw) genes from whole-genome resequencing.
    Grant NP; Toy JJ; Funnell-Harris DL; Sattler SE
    Sci Rep; 2023 Oct; 13(1):16638. PubMed ID: 37789045
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Grain iron and zinc content is independent of anthocyanin accumulation in pigmented rice genotypes of Northeast region of India.
    Gogoi S; Singh S; Swamy BPM; Das P; Sarma D; Sarma RN; Acharjee S; Deka SD
    Sci Rep; 2024 Feb; 14(1):4128. PubMed ID: 38374189
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Sweet Sorghum Originated through Selection of
    Zhang LM; Leng CY; Luo H; Wu XY; Liu ZQ; Zhang YM; Zhang H; Xia Y; Shang L; Liu CM; Hao DY; Zhou YH; Chu CC; Cai HW; Jing HC
    Plant Cell; 2018 Oct; 30(10):2286-2307. PubMed ID: 30309900
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The genetic architecture of phosphorus efficiency in sorghum involves pleiotropic QTL for root morphology and grain yield under low phosphorus availability in the soil.
    Bernardino KC; Pastina MM; Menezes CB; de Sousa SM; Maciel LS; Carvalho G; Guimarães CT; Barros BA; da Costa E Silva L; Carneiro PCS; Schaffert RE; Kochian LV; Magalhaes JV
    BMC Plant Biol; 2019 Feb; 19(1):87. PubMed ID: 30819116
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Association mapping unveils favorable alleles for grain iron and zinc concentrations in lentil (Lens culinaris subsp. culinaris).
    Singh A; Sharma V; Dikshit HK; Aski M; Kumar H; Thirunavukkarasu N; Patil BS; Kumar S; Sarker A
    PLoS One; 2017; 12(11):e0188296. PubMed ID: 29161321
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study.
    Krishnappa G; Khan H; Krishna H; Kumar S; Mishra CN; Parkash O; Devate NB; Nepolean T; Rathan ND; Mamrutha HM; Srivastava P; Biradar S; Uday G; Kumar M; Singh G; Singh GP
    Sci Rep; 2022 Jul; 12(1):12444. PubMed ID: 35858934
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Association Mapping of Candidate Genes Associated with Iron and Zinc Content in Rice (
    Bukomarhe CB; Kimwemwe PK; Githiri SM; Mamati EG; Kimani W; Mutai C; Nganga F; Nguezet PD; Mignouna J; Civava RM; Fofana M
    Genes (Basel); 2023 Sep; 14(9):. PubMed ID: 37761955
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Integration of Experiments across Diverse Environments Identifies the Genetic Determinants of Variation in Sorghum bicolor Seed Element Composition.
    Shakoor N; Ziegler G; Dilkes BP; Brenton Z; Boyles R; Connolly EL; Kresovich S; Baxter I
    Plant Physiol; 2016 Apr; 170(4):1989-98. PubMed ID: 26896393
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Genetic analysis toward more nutritious barley grains for a food secure world.
    Thabet SG; Alomari DZ; Brinch-Pedersen H; Alqudah AM
    Bot Stud; 2022 Mar; 63(1):6. PubMed ID: 35267113
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Improving Zinc and Iron Biofortification in Wheat through Genomics Approaches.
    Wani SH; Gaikwad K; Razzaq A; Samantara K; Kumar M; Govindan V
    Mol Biol Rep; 2022 Aug; 49(8):8007-8023. PubMed ID: 35661970
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor.
    Mantilla Perez MB; Zhao J; Yin Y; Hu J; Salas Fernandez MG
    Theor Appl Genet; 2014 Dec; 127(12):2645-62. PubMed ID: 25326721
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.).
    Izquierdo P; Astudillo C; Blair MW; Iqbal AM; Raatz B; Cichy KA
    Theor Appl Genet; 2018 Aug; 131(8):1645-1658. PubMed ID: 29752522
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genetic control of source-sink relationships in grain sorghum.
    Chiluwal A; Perumal R; Poudel HP; Muleta K; Ostmeyer T; Fedenia L; Pokharel M; Bean SR; Sebela D; Bheemanahalli R; Oumarou H; Klein P; Rooney WL; Jagadish SVK
    Planta; 2022 Jan; 255(2):40. PubMed ID: 35038036
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Vacuolar Phytosiderophore Transporter Alters Iron and Zinc Accumulation in Polished Rice Grains.
    Che J; Yokosho K; Yamaji N; Ma JF
    Plant Physiol; 2019 Sep; 181(1):276-288. PubMed ID: 31331995
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genetic variation for grain nutritional profile and yield potential in sorghum and the possibility of selection for drought tolerance under irrigated conditions.
    Kamal NM; Gorafi YSA; Tomemori H; Kim JS; Elhadi GMI; Tsujimoto H
    BMC Genomics; 2023 Sep; 24(1):515. PubMed ID: 37660014
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genome-wide association analysis of seedling traits in diverse Sorghum germplasm under thermal stress.
    Chopra R; Burow G; Burke JJ; Gladman N; Xin Z
    BMC Plant Biol; 2017 Jan; 17(1):12. PubMed ID: 28086798
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Examining Two Sets of Introgression Lines in Rice (Oryza sativa L.) Reveals Favorable Alleles that Improve Grain Zn and Fe Concentrations.
    Xu Q; Zheng TQ; Hu X; Cheng LR; Xu JL; Shi YM; Li ZK
    PLoS One; 2015; 10(7):e0131846. PubMed ID: 26161553
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Genetic dissection of grain architecture-related traits in a winter wheat population.
    Schierenbeck M; Alqudah AM; Lohwasser U; Tarawneh RA; Simón MR; Börner A
    BMC Plant Biol; 2021 Sep; 21(1):417. PubMed ID: 34507551
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Comprehensive phenotypic analysis and quantitative trait locus identification for grain mineral concentration, content, and yield in maize (Zea mays L.).
    Gu R; Chen F; Liu B; Wang X; Liu J; Li P; Pan Q; Pace J; Soomro AA; Lübberstedt T; Mi G; Yuan L
    Theor Appl Genet; 2015 Sep; 128(9):1777-89. PubMed ID: 26058362
    [TBL] [Abstract][Full Text] [Related]  

  • 80. High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array.
    Bekele WA; Wieckhorst S; Friedt W; Snowdon RJ
    Plant Biotechnol J; 2013 Dec; 11(9):1112-25. PubMed ID: 23919585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.