These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38830995)

  • 41. econvRBP: Improved ensemble convolutional neural networks for RNA binding protein prediction directly from sequence.
    Zhao Y; Du X
    Methods; 2020 Oct; 181-182():15-23. PubMed ID: 31513916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DeepMPSF: A Deep Learning Network for Predicting General Protein Phosphorylation Sites Based on Multiple Protein Sequence Features.
    Xie J; Quan L; Wang X; Wu H; Jin Z; Pan D; Chen T; Wu T; Lyu Q
    J Chem Inf Model; 2023 Nov; 63(22):7258-7271. PubMed ID: 37931253
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein-ligand binding residue prediction enhancement through hybrid deep heterogeneous learning of sequence and structure data.
    Xia CQ; Pan X; Shen HB
    Bioinformatics; 2020 May; 36(10):3018-3027. PubMed ID: 32091580
    [TBL] [Abstract][Full Text] [Related]  

  • 44. SAResNet: self-attention residual network for predicting DNA-protein binding.
    Shen LC; Liu Y; Song J; Yu DJ
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837387
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PIPENN: protein interface prediction from sequence with an ensemble of neural nets.
    Stringer B; de Ferrante H; Abeln S; Heringa J; Feenstra KA; Haydarlou R
    Bioinformatics; 2022 Apr; 38(8):2111-2118. PubMed ID: 35150231
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-resolution transcription factor binding sites prediction improved performance and interpretability by deep learning method.
    Zhang Y; Wang Z; Zeng Y; Zhou J; Zou Q
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34272562
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DELPHI: accurate deep ensemble model for protein interaction sites prediction.
    Li Y; Golding GB; Ilie L
    Bioinformatics; 2021 May; 37(7):896-904. PubMed ID: 32840562
    [TBL] [Abstract][Full Text] [Related]  

  • 48. E2EATP: Fast and High-Accuracy Protein-ATP Binding Residue Prediction via Protein Language Model Embedding.
    Rao B; Yu X; Bai J; Hu J
    J Chem Inf Model; 2024 Jan; 64(1):289-300. PubMed ID: 38127815
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SENSDeep: An Ensemble Deep Learning Method for Protein-Protein Interaction Sites Prediction.
    Aybey E; Gümüş Ö
    Interdiscip Sci; 2023 Mar; 15(1):55-87. PubMed ID: 36346583
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DeepHE: Accurately predicting human essential genes based on deep learning.
    Zhang X; Xiao W; Xiao W
    PLoS Comput Biol; 2020 Sep; 16(9):e1008229. PubMed ID: 32936825
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure-based prediction of nucleic acid binding residues by merging deep learning- and template-based approaches.
    Jiang Z; Shen YY; Liu R
    PLoS Comput Biol; 2023 Sep; 19(9):e1011428. PubMed ID: 37672551
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prediction of drug-target binding affinity based on multi-scale feature fusion.
    Yu H; Xu WX; Tan T; Liu Z; Shi JY
    Comput Biol Med; 2024 Aug; 178():108699. PubMed ID: 38870725
    [TBL] [Abstract][Full Text] [Related]  

  • 53. WVDL: Weighted Voting Deep Learning Model for Predicting RNA-Protein Binding Sites.
    Pan Z; Zhou S; Liu T; Liu C; Zang M; Wang Q
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3322-3328. PubMed ID: 37028092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comprehensive review of protein-centric predictors for biomolecular interactions: from proteins to nucleic acids and beyond.
    Jia P; Zhang F; Wu C; Li M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38739759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network.
    Yang Y; Hou Z; Wang Y; Ma H; Sun P; Ma Z; Wong KC; Li X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189638
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CAPLA: improved prediction of protein-ligand binding affinity by a deep learning approach based on a cross-attention mechanism.
    Jin Z; Wu T; Chen T; Pan D; Wang X; Xie J; Quan L; Lyu Q
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36688724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A deep learning framework for modeling structural features of RNA-binding protein targets.
    Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J
    Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Review and comparative assessment of sequence-based predictors of protein-binding residues.
    Zhang J; Kurgan L
    Brief Bioinform; 2018 Sep; 19(5):821-837. PubMed ID: 28334258
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Deep Learning Framework for Gene Ontology Annotations With Sequence- and Network-Based Information.
    Zhang F; Song H; Zeng M; Wu FX; Li Y; Pan Y; Li M
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2208-2217. PubMed ID: 31985440
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An Overview of Computational Tools of Nucleic Acid Binding Site Prediction for Site-specific Proteins and Nucleases.
    Wan H; Li JM; Ding H; Lin SX; Tu SQ; Tian XH; Hu JP; Chang S
    Protein Pept Lett; 2020; 27(5):370-384. PubMed ID: 31746287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.