BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 38831505)

  • 21. Phase separation in transcription factor dynamics and chromatin organization.
    Wagh K; Garcia DA; Upadhyaya A
    Curr Opin Struct Biol; 2021 Dec; 71():148-155. PubMed ID: 34303933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein condensates in the the secretory pathway: Unraveling biophysical interactions and function.
    Campelo F; Lillo JV; von Blume J
    Biophys J; 2024 Jun; 123(12):1531-1541. PubMed ID: 38698644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates.
    Ma W; Zhen G; Xie W; Mayr C
    Elife; 2021 Mar; 10():. PubMed ID: 33650968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants.
    Kelley FM; Favetta B; Regy RM; Mittal J; Schuster BS
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34916288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A viral biomolecular condensate coordinates assembly of progeny particles.
    Charman M; Grams N; Kumar N; Halko E; Dybas JM; Abbott A; Lum KK; Blumenthal D; Tsopurashvili E; Weitzman MD
    Nature; 2023 Apr; 616(7956):332-338. PubMed ID: 37020020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor.
    Stortz M; Pecci A; Presman DM; Levi V
    BMC Biol; 2020 Jun; 18(1):59. PubMed ID: 32487073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP-induced cross-linking of a biomolecular condensate.
    Coupe S; Fakhri N
    Biophys J; 2024 Jun; 123(11):1356-1366. PubMed ID: 37480229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Structural biology of transcription on eukaryotic chromatin].
    Nishimura Y
    Tanpakushitsu Kakusan Koso; 2005 Aug; 50(10 Suppl):1247-63. PubMed ID: 16104592
    [No Abstract]   [Full Text] [Related]  

  • 29. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.
    Scholl D; Deniz AA
    J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of nuclear condensates by the Mediator complex subunit Med15 in mammalian cells.
    Shi Y; Chen J; Zeng WJ; Li M; Zhao W; Zhang XD; Yao J
    BMC Biol; 2021 Nov; 19(1):245. PubMed ID: 34789250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design considerations for analyzing protein translation regulation by condensates.
    Roden CA; Gladfelter AS
    RNA; 2022 Jan; 28(1):88-96. PubMed ID: 34670845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organization and regulation of gene transcription.
    Cramer P
    Nature; 2019 Sep; 573(7772):45-54. PubMed ID: 31462772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
    Boeynaems S; Holehouse AS; Weinhardt V; Kovacs D; Van Lindt J; Larabell C; Van Den Bosch L; Das R; Tompa PS; Pappu RV; Gitler AD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7889-7898. PubMed ID: 30926670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors.
    Palmer AC; Egan JB; Shearwin KE
    Transcription; 2011; 2(1):9-14. PubMed ID: 21326903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms and regulation underlying membraneless organelle plasticity control.
    Ismail H; Liu X; Yang F; Li J; Zahid A; Dou Z; Liu X; Yao X
    J Mol Cell Biol; 2021 Aug; 13(4):239-258. PubMed ID: 33914074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Making the Case for Disordered Proteins and Biomolecular Condensates in Bacteria.
    Cohan MC; Pappu RV
    Trends Biochem Sci; 2020 Aug; 45(8):668-680. PubMed ID: 32456986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Demixing is a default process for biological condensates formed via phase separation.
    Zhu S; Shen Z; Wu X; Han W; Jia B; Lu W; Zhang M
    Science; 2024 May; 384(6698):920-928. PubMed ID: 38781377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates.
    Alemasova EE; Lavrik OI
    Nucleic Acids Res; 2022 Oct; 50(19):10817-10838. PubMed ID: 36243979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization.
    Liu X; Jiang S; Ma L; Qu J; Zhao L; Zhu X; Ding J
    Genome Biol; 2021 Aug; 22(1):230. PubMed ID: 34404453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible Kinetic Trapping of FUS Biomolecular Condensates.
    Chatterjee S; Kan Y; Brzezinski M; Koynov K; Regy RM; Murthy AC; Burke KA; Michels JJ; Mittal J; Fawzi NL; Parekh SH
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104247. PubMed ID: 34862761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.