BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38831751)

  • 1. Obesogenic High-Fat Diet and MYC Cooperate to Promote Lactate Accumulation and Tumor Microenvironment Remodeling in Prostate Cancer.
    Boufaied N; Chetta P; Hallal T; Cacciatore S; Lalli D; Luthold C; Homsy K; Imada EL; Syamala S; Photopoulos C; Di Matteo A; de Polo A; Storaci AM; Huang Y; Giunchi F; Sheridan PA; Michelotti G; Nguyen QD; Zhao X; Liu Y; Davicioni E; Spratt DE; Sabbioneda S; Maga G; Mucci LA; Ghigna C; Marchionni L; Butler LM; Ellis L; Bordeleau F; Loda M; Vaira V; Labbé DP; Zadra G
    Cancer Res; 2024 Jun; 84(11):1834-1855. PubMed ID: 38831751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diet and Tumor Genetics Conspire to Promote Prostate Cancer Metabolism and Shape the Tumor Microenvironment.
    Frigo DE
    Cancer Res; 2024 Jun; 84(11):1742-1744. PubMed ID: 38831750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program.
    Labbé DP; Zadra G; Yang M; Reyes JM; Lin CY; Cacciatore S; Ebot EM; Creech AL; Giunchi F; Fiorentino M; Elfandy H; Syamala S; Karoly ED; Alshalalfa M; Erho N; Ross A; Schaeffer EM; Gibb EA; Takhar M; Den RB; Lehrer J; Karnes RJ; Freedland SJ; Davicioni E; Spratt DE; Ellis L; Jaffe JD; DʼAmico AV; Kantoff PW; Bradner JE; Mucci LA; Chavarro JE; Loda M; Brown M
    Nat Commun; 2019 Sep; 10(1):4358. PubMed ID: 31554818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of tumor-associated macrophages in prostate cancer transgenic mouse models.
    de Groot AE; Myers KV; Krueger TEG; Kiemen AL; Nagy NH; Brame A; Torres VE; Zhang Z; Trabzonlu L; Brennen WN; Wirtz D; De Marzo AM; Amend SR; Pienta KJ
    Prostate; 2021 Jul; 81(10):629-647. PubMed ID: 33949714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors.
    Kes MMG; Van den Bossche J; Griffioen AW; Huijbers EJM
    Biochim Biophys Acta Rev Cancer; 2020 Dec; 1874(2):188427. PubMed ID: 32961257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage inhibitory cytokine-1 induced by a high-fat diet promotes prostate cancer progression by stimulating tumor-promoting cytokine production from tumor stromal cells.
    Huang M; Narita S; Koizumi A; Nara T; Numakura K; Satoh S; Nanjo H; Habuchi T
    Cancer Commun (Lond); 2021 May; 41(5):389-403. PubMed ID: 33773090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of glycolysis and lactate in the induction of tumor-associated macrophages immunosuppressive phenotype.
    Zhang Y; Zhang X; Meng Y; Xu X; Zuo D
    Int Immunopharmacol; 2022 Sep; 110():108994. PubMed ID: 35777265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A long noncoding RNA connects c-Myc to tumor metabolism.
    Hung CL; Wang LY; Yu YL; Chen HW; Srivastava S; Petrovics G; Kung HJ
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18697-702. PubMed ID: 25512540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the veil of lactate in tumor-associated macrophages: a successful strategy for immunometabolic therapy.
    Tao H; Zhong X; Zeng A; Song L
    Front Immunol; 2023; 14():1208870. PubMed ID: 37564659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of FOXP3 and TSC1 Accelerates Prostate Cancer Progression through Synergistic Transcriptional and Posttranslational Regulation of c-MYC.
    Wu L; Yi B; Wei S; Rao D; He Y; Naik G; Bae S; Liu XM; Yang WH; Sonpavde G; Liu R; Wang L
    Cancer Res; 2019 Apr; 79(7):1413-1425. PubMed ID: 30733194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AKT1 and MYC induce distinctive metabolic fingerprints in human prostate cancer.
    Priolo C; Pyne S; Rose J; Regan ER; Zadra G; Photopoulos C; Cacciatore S; Schultz D; Scaglia N; McDunn J; De Marzo AM; Loda M
    Cancer Res; 2014 Dec; 74(24):7198-204. PubMed ID: 25322691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy.
    Mukha A; Kahya U; Linge A; Chen O; Löck S; Lukiyanchuk V; Richter S; Alves TC; Peitzsch M; Telychko V; Skvortsov S; Negro G; Aschenbrenner B; Skvortsova II; Mirtschink P; Lohaus F; Hölscher T; Neubauer H; Rivandi M; Labitzky V; Lange T; Franken A; Behrens B; Stoecklein NH; Toma M; Sommer U; Zschaeck S; Rehm M; Eisenhofer G; Schwager C; Abdollahi A; Groeben C; Kunz-Schughart LA; Baretton GB; Baumann M; Krause M; Peitzsch C; Dubrovska A
    Theranostics; 2021; 11(16):7844-7868. PubMed ID: 34335968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer.
    Masetti M; Carriero R; Portale F; Marelli G; Morina N; Pandini M; Iovino M; Partini B; Erreni M; Ponzetta A; Magrini E; Colombo P; Elefante G; Colombo FS; den Haan JMM; Peano C; Cibella J; Termanini A; Kunderfranco P; Brummelman J; Chung MWH; Lazzeri M; Hurle R; Casale P; Lugli E; DePinho RA; Mukhopadhyay S; Gordon S; Di Mitri D
    J Exp Med; 2022 Feb; 219(2):. PubMed ID: 34919143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate-induced activation of tumor-associated fibroblasts and IL-8-mediated macrophage recruitment promote lung cancer progression.
    Gu X; Zhu Y; Su J; Wang S; Su X; Ding X; Jiang L; Fei X; Zhang W
    Redox Biol; 2024 Aug; 74():103209. PubMed ID: 38861833
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Zhang S; Li J; Xie P; Zang T; Shen H; Cao G; Zhu Y; Yue Z; Li Z
    Rejuvenation Res; 2019 Apr; 22(2):138-145. PubMed ID: 29932015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary energy balance modulates prostate cancer progression in Hi-Myc mice.
    Blando J; Moore T; Hursting S; Jiang G; Saha A; Beltran L; Shen J; Repass J; Strom S; DiGiovanni J
    Cancer Prev Res (Phila); 2011 Dec; 4(12):2002-14. PubMed ID: 21952584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotherapy delivery of c-myc inhibitor targets Protumor Macrophages and preserves Antitumor Macrophages in Breast Cancer.
    Esser AK; Ross MH; Fontana F; Su X; Gabay A; Fox GC; Xu Y; Xiang J; Schmieder AH; Yang X; Cui G; Scott M; Achilefu S; Chauhan J; Fletcher S; Lanza GM; Weilbaecher KN
    Theranostics; 2020; 10(17):7510-7526. PubMed ID: 32685002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity.
    Kim J; Roh M; Abdulkadir SA
    BMC Cancer; 2010 Jun; 10():248. PubMed ID: 20515470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepsin cooperates with MYC in the progression of adenocarcinoma in a prostate cancer mouse model.
    Nandana S; Ellwood-Yen K; Sawyers C; Wills M; Weidow B; Case T; Vasioukhin V; Matusik R
    Prostate; 2010 May; 70(6):591-600. PubMed ID: 19938013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caveolin-1 upregulation contributes to c-Myc-induced high-grade prostatic intraepithelial neoplasia and prostate cancer.
    Yang G; Goltsov AA; Ren C; Kurosaka S; Edamura K; Logothetis R; DeMayo FJ; Troncoso P; Blando J; DiGiovanni J; Thompson TC
    Mol Cancer Res; 2012 Feb; 10(2):218-29. PubMed ID: 22144662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.