These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38832142)

  • 1. Treed Gaussian processes for animal movement modeling.
    Rieber CJ; Hefley TJ; Haukos DA
    Ecol Evol; 2024 Jun; 14(6):e11447. PubMed ID: 38832142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trade-offs with telemetry-derived contact networks for infectious disease studies in wildlife.
    Gilbertson MLJ; White LA; Craft ME
    Methods Ecol Evol; 2021 Jan; 12(1):76-87. PubMed ID: 33692875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hierarchical machine learning framework for the analysis of large scale animal movement data.
    Torney CJ; Morales JM; Husmeier D
    Mov Ecol; 2021 Feb; 9(1):6. PubMed ID: 33602302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gaussian Process Panel Modeling-Machine Learning Inspired Analysis of Longitudinal Panel Data.
    Karch JD; Brandmaier AM; Voelkle MC
    Front Psychol; 2020; 11():351. PubMed ID: 32265770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scale-insensitive estimation of speed and distance traveled from animal tracking data.
    Noonan MJ; Fleming CH; Akre TS; Drescher-Lehman J; Gurarie E; Harrison AL; Kays R; Calabrese JM
    Mov Ecol; 2019; 7():35. PubMed ID: 31788314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian survival treed hazards model using latent Gaussian processes.
    Payne RD; Guha N; Mallick BK
    Biometrics; 2024 Jan; 80(1):. PubMed ID: 38364805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint estimation over multiple individuals improves behavioural state inference from animal movement data.
    Jonsen I
    Sci Rep; 2016 Feb; 6():20625. PubMed ID: 26853261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Movement-assisted localization from acoustic telemetry data.
    Hostetter NJ; Royle JA
    Mov Ecol; 2020; 8():15. PubMed ID: 32617163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for location uncertainty in azimuthal telemetry data improves ecological inference.
    Gerber BD; Hooten MB; Peck CP; Rice MB; Gammonley JH; Apa AD; Davis AJ
    Mov Ecol; 2018; 6():14. PubMed ID: 30062012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling abundance, distribution, movement and space use with camera and telemetry data.
    Chandler RB; Crawford DA; Garrison EP; Miller KV; Cherry MJ
    Ecology; 2022 Oct; 103(10):e3583. PubMed ID: 34767254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guidelines for managing lesser prairie-chicken populations and their habitats.
    Hagen CA; Jamison BE; Giesen KM; Riley TZ
    Wildl Soc Bull; 2004 Mar; 32(1):69-82. PubMed ID: 32327860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses.
    Signer J; Fieberg J; Avgar T
    Ecol Evol; 2019 Jan; 9(2):880-890. PubMed ID: 30766677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analytical approach to sparse telemetry data.
    Kinney MJ; Kacev D; Kohin S; Eguchi T
    PLoS One; 2017; 12(11):e0188660. PubMed ID: 29182675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning for modeling animal movement.
    Wijeyakulasuriya DA; Eisenhauer EW; Shaby BA; Hanks EM
    PLoS One; 2020; 15(7):e0235750. PubMed ID: 32716917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Highly Contiguous and Annotated Genome Assembly of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus).
    Black AN; Bondo KJ; Mularo A; Hernandez A; Yu Y; Stein CM; Gregory A; Fricke KA; Prendergast J; Sullins D; Haukos D; Whitson M; Grisham B; Lowe Z; DeWoody JA
    Genome Biol Evol; 2023 Apr; 15(4):. PubMed ID: 36916502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AIMS for wildlife: Developing an automated interactive monitoring system to integrate real-time movement and environmental data for true adaptive management.
    Casazza ML; Lorenz AA; Overton CT; Matchett EL; Mott AL; Mackell DA; McDuie F
    J Environ Manage; 2023 Nov; 345():118636. PubMed ID: 37574637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving Bayesian radiological profiling of waste drums using Dirichlet priors, Gaussian process priors, and hierarchical modeling.
    Laloy E; Rogiers B; Bielen A; Borella A; Boden S
    Appl Radiat Isot; 2023 Apr; 194():110691. PubMed ID: 36716689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating abundance of an open population with an N-mixture model using auxiliary data on animal movements.
    Ketz AC; Johnson TL; Monello RJ; Mack JA; George JL; Kraft BR; Wild MA; Hooten MB; Hobbs NT
    Ecol Appl; 2018 Apr; 28(3):816-825. PubMed ID: 29405475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spatial mark--resight model augmented with telemetry data.
    Sollmann R; Gardner B; Parsons AW; Stocking JJ; McClintock BT; Simons TR; Pollock KH; O'Connell AF
    Ecology; 2013 Mar; 94(3):553-9. PubMed ID: 23687880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SiMRiv: an R package for mechanistic simulation of individual, spatially-explicit multistate movements in rivers, heterogeneous and homogeneous spaces incorporating landscape bias.
    Quaglietta L; Porto M
    Mov Ecol; 2019; 7():11. PubMed ID: 30984401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.