BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38832240)

  • 1. Aluminum-air batteries: current advances and promises with future directions.
    Rani B; Yadav JK; Saini P; Pandey AP; Dixit A
    RSC Adv; 2024 May; 14(25):17628-17663. PubMed ID: 38832240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Mechanistic Overview of the Current Status and Future Challenges of Aluminum Anode and Electrolyte in Aluminum-Air Batteries.
    Nayem SMA; Islam S; Mohamed M; Shaheen Shah S; Ahammad AJS; Aziz MA
    Chem Rec; 2024 Jan; 24(1):e202300005. PubMed ID: 36807755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges and Strategies of Low-Cost Aluminum Anodes for High-Performance Al-Based Batteries.
    Jiang M; Fu C; Meng P; Ren J; Wang J; Bu J; Dong A; Zhang J; Xiao W; Sun B
    Adv Mater; 2022 Jan; 34(2):e2102026. PubMed ID: 34668245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent progress in aqueous aluminum-ion batteries.
    Wang B; Tang Y; Deng T; Zhu J; Sun B; Su Y; Ti R; Yang J; Wu W; Cheng N; Zhang C; Lu X; Xu Y; Liang J
    Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38848693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes.
    Wang ZL; Xu D; Xu JJ; Zhang XB
    Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium-Air Batteries: Air-Electrochemistry and Anode Stabilization.
    Chen K; Yang DY; Huang G; Zhang XB
    Acc Chem Res; 2021 Feb; 54(3):632-641. PubMed ID: 33449629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges and Strategies of Aluminum Anodes for High-Performance Aluminum-Air Batteries.
    Zhang Y; Lv C; Zhu Y; Kuang J; Wang H; Li Y; Tang Y
    Small Methods; 2024 May; 8(5):e2300911. PubMed ID: 38150657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging Nonaqueous Aluminum-Ion Batteries: Challenges, Status, and Perspectives.
    Zhang Y; Liu S; Ji Y; Ma J; Yu H
    Adv Mater; 2018 Sep; 30(38):e1706310. PubMed ID: 29920792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Trends in Electrode and Electrolyte Design for Aluminum Batteries.
    Das S; Manna SS; Pathak B
    ACS Omega; 2021 Jan; 6(2):1043-1053. PubMed ID: 33490763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances of metal telluride anodes for high-performance lithium/sodium-ion batteries.
    Fan H; Mao P; Sun H; Wang Y; Mofarah SS; Koshy P; Arandiyan H; Wang Z; Liu Y; Shao Z
    Mater Horiz; 2022 Feb; 9(2):524-546. PubMed ID: 34806103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aluminum and lithium sulfur batteries: a review of recent progress and future directions.
    Akgenc B; Sarikurt S; Yagmurcukardes M; Ersan F
    J Phys Condens Matter; 2021 May; 33(25):. PubMed ID: 33882469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Sodium-Ion Batteries: Cathode Materials.
    Nguyen TP; Kim IT
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-Solid-State Aluminum-Air Batteries with Ultra-high Energy Density and Uniform Aluminum Stripping Behavior.
    Lv C; Li Y; Zhu Y; Zhang Y; Kuang J; Zhao Q; Tang Y; Wang H
    Adv Sci (Weinh); 2023 Oct; 10(29):e2304214. PubMed ID: 37587016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Electrolytes for High-Performance Aqueous Aluminum-Ion Batteries.
    Ejigu A; Le Fevre LW; Elgendy A; Spencer BF; Bawn C; Dryfe RAW
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25232-25245. PubMed ID: 35622978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum electrolytes for Al dual-ion batteries.
    Kravchyk KV; Kovalenko MV
    Commun Chem; 2020 Aug; 3(1):120. PubMed ID: 36703337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paper-based microfluidic aluminum-air batteries: toward next-generation miniaturized power supply.
    Shen LL; Zhang GR; Biesalski M; Etzold BJM
    Lab Chip; 2019 Oct; 19(20):3438-3447. PubMed ID: 31556903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Mechanistic Overview of the Current Status and Future Challenges in Air Cathode for Aluminum Air Batteries.
    Islam S; Nayem SMA; Anjum A; Shaheen Shah S; Ahammad AJS; Aziz MA
    Chem Rec; 2024 Jan; 24(1):e202300017. PubMed ID: 37010435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives.
    Nazir G; Rehman A; Lee JH; Kim CH; Gautam J; Heo K; Hussain S; Ikram M; AlObaid AA; Lee SY; Park SJ
    Nanomicro Lett; 2024 Feb; 16(1):138. PubMed ID: 38421464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries.
    Liang X; Yun J; Wang Y; Xiang H; Sun Y; Feng Y; Yu Y
    Nanoscale; 2019 Nov; 11(41):19140-19157. PubMed ID: 31595921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Engineering of Cathode Materials: Enhancing the High Performance of Lithium-Ion Batteries.
    Qi M; Wang L; Huang X; Ma M; He X
    Small; 2024 Jun; ():e2402443. PubMed ID: 38845082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.