These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 38832484)
1. Bioinformatic analyses reveal lysosomal-associated protein transmembrane 5 as a potential therapeutic target in lipotoxicity-induced injury in diabetic kidney disease. Chen X; Zhu S; Huang C; Liu J; Wang J; Cui S Ren Fail; 2024 Dec; 46(2):2359638. PubMed ID: 38832484 [TBL] [Abstract][Full Text] [Related]
2. Bioinformatics prediction and experimental verification of key biomarkers for diabetic kidney disease based on transcriptome sequencing in mice. Zhao J; He K; Du H; Wei G; Wen Y; Wang J; Zhou X; Wang J PeerJ; 2022; 10():e13932. PubMed ID: 36157062 [TBL] [Abstract][Full Text] [Related]
3. Integrin subunit beta 6 is a potential diagnostic marker for acute kidney injury in patients with diabetic kidney disease: a single cell sequencing data analysis. Yao C; Li Z; Su H; Sun K; Liu Q; Zhang Y; Zhu L; Jiang F; Fan Y; Shou S; Wu H; Jin H Ren Fail; 2024 Dec; 46(2):2409348. PubMed ID: 39356055 [TBL] [Abstract][Full Text] [Related]
4. Identification of potential key lipid metabolism-related genes involved in tubular injury in diabetic kidney disease by bioinformatics analysis. Fan Y; He J; Shi L; Zhang M; Chen Y; Xu L; Han N; Jiang Y Acta Diabetol; 2024 Aug; 61(8):1053-1068. PubMed ID: 38691241 [TBL] [Abstract][Full Text] [Related]
5. Decreased secretion and profibrotic activity of tubular exosomes in diabetic kidney disease. Wen J; Ma Z; Livingston MJ; Zhang W; Yuan Y; Guo C; Liu Y; Fu P; Dong Z Am J Physiol Renal Physiol; 2020 Oct; 319(4):F664-F673. PubMed ID: 32715764 [TBL] [Abstract][Full Text] [Related]
6. Single-cell RNA and transcriptome sequencing profiles identify immune-associated key genes in the development of diabetic kidney disease. Zhang X; Chao P; Zhang L; Xu L; Cui X; Wang S; Wusiman M; Jiang H; Lu C Front Immunol; 2023; 14():1030198. PubMed ID: 37063851 [TBL] [Abstract][Full Text] [Related]
8. Elevated ALOX12 in renal tissue predicts progression in diabetic kidney disease. Wang M; Wang J; Wang J; Wu Y; Qi X Ren Fail; 2024 Dec; 46(1):2313182. PubMed ID: 38345057 [TBL] [Abstract][Full Text] [Related]
9. Verapamil ameliorates proximal tubular epithelial cells apoptosis and fibrosis in diabetic kidney. Song Y; Guo F; Zhao Y; Zhao L; Fan X; Zhang Y; Liu Y; Qin G Eur J Pharmacol; 2021 Nov; 911():174552. PubMed ID: 34627808 [TBL] [Abstract][Full Text] [Related]
10. Bioinformatics-based discovery of the urinary BBOX1 mRNA as a potential biomarker of diabetic kidney disease. Zhou LT; Lv LL; Qiu S; Yin Q; Li ZL; Tang TT; Ni LH; Feng Y; Wang B; Ma KL; Liu BC J Transl Med; 2019 Feb; 17(1):59. PubMed ID: 30819181 [TBL] [Abstract][Full Text] [Related]
11. NET-Related Gene as Potential Diagnostic Biomarkers for Diabetic Tubulointerstitial Injury. Liang Y; Lin J; Huang B; Weng M; Zhen T; Yang L; Chen Y; Li Q; Wan J J Diabetes Res; 2024; 2024():4815488. PubMed ID: 38766319 [No Abstract] [Full Text] [Related]
12. Inhibition of TFEB deacetylation in proximal tubular epithelial cells (TECs) promotes TFEB activation and alleviates TEC damage in diabetic kidney disease. Li X; Zhang Y; Chen H; Wu Y; Chen Y; Gong S; Liu Y; Liu H FASEB J; 2024 Aug; 38(16):e23884. PubMed ID: 39135512 [TBL] [Abstract][Full Text] [Related]
13. Correlation Between Serum 25-Hydroxyvitamin D Levels in Albuminuria Progression of Diabetic Kidney Disease and Underlying Mechanisms By Bioinformatics Analysis. Huang B; Wen W; Ye S Front Endocrinol (Lausanne); 2022; 13():880930. PubMed ID: 35634488 [TBL] [Abstract][Full Text] [Related]
14. Identification of Lipotoxicity-Related Biomarkers in Diabetic Nephropathy Based on Bioinformatic Analysis. Nie H; Yang H; Cheng L; Yu J J Diabetes Res; 2024; 2024():5550812. PubMed ID: 38774257 [No Abstract] [Full Text] [Related]
15. p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease. Ma Z; Li L; Livingston MJ; Zhang D; Mi Q; Zhang M; Ding HF; Huo Y; Mei C; Dong Z J Clin Invest; 2020 Sep; 130(9):5011-5026. PubMed ID: 32804155 [TBL] [Abstract][Full Text] [Related]
16. Identification and functional analysis of the hub Ferroptosis-Related gene EZH2 in diabetic kidney disease. Wang H; Wang J; Ran Q; Leng Y; Liu T; Xiong Z; Zou D; Yang W Int Immunopharmacol; 2024 May; 133():112138. PubMed ID: 38678670 [TBL] [Abstract][Full Text] [Related]
17. Acetyl-CoA carboxylase 2 suppression rescues human proximal tubular cells from palmitic acid induced lipotoxicity via autophagy. Xin W; Zhao X; Liu L; Xu Y; Li Z; Chen L; Wang X; Yi F; Wan Q Biochem Biophys Res Commun; 2015 Jul; 463(3):364-9. PubMed ID: 26022126 [TBL] [Abstract][Full Text] [Related]
18. Tonabersat suppresses priming/activation of the NOD-like receptor protein-3 (NLRP3) inflammasome and decreases renal tubular epithelial-to-macrophage crosstalk in a model of diabetic kidney disease. Cliff CL; Squires PE; Hills CE Cell Commun Signal; 2024 Jul; 22(1):351. PubMed ID: 38970061 [TBL] [Abstract][Full Text] [Related]
19. Ectopic lipid accumulation: potential role in tubular injury and inflammation in diabetic kidney disease. Yang W; Luo Y; Yang S; Zeng M; Zhang S; Liu J; Han Y; Liu Y; Zhu X; Wu H; Liu F; Sun L; Xiao L Clin Sci (Lond); 2018 Nov; 132(22):2407-2422. PubMed ID: 30348828 [TBL] [Abstract][Full Text] [Related]
20. METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial-mesenchymal transition of renal tubular cells in diabetic kidney disease. Xu Z; Jia K; Wang H; Gao F; Zhao S; Li F; Hao J Cell Death Dis; 2021 Jan; 12(1):32. PubMed ID: 33414476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]