These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38832740)

  • 1. Hydrogen-bond linking is crucial for growing ice VII embryos.
    Zhang X; Mochizuki K
    J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38832740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism.
    Lupi L; Peters B; Molinero V
    J Chem Phys; 2016 Dec; 145(21):211910. PubMed ID: 28799353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the role of polymers on the nucleating behavior of water in dilute supercooled solutions.
    Indra A; Bhendale M; Singh JK
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37493130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity of transition pathways in the course of crystallization into ice VII.
    Mochizuki K; Himoto K; Matsumoto M
    Phys Chem Chem Phys; 2014 Aug; 16(31):16419-25. PubMed ID: 24901352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physically constrained classical description of the homogeneous nucleation of ice in water.
    Koop T; Murray BJ
    J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous ice nucleation in an ab initio machine-learning model of water.
    Piaggi PM; Weis J; Panagiotopoulos AZ; Debenedetti PG; Car R
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2207294119. PubMed ID: 35939708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modeling of solid-cluster evolution applied to the nanosecond solidification of water near the metastable limit.
    Sterbentz DM; Myint PC; Delplanque JP; Belof JL
    J Chem Phys; 2019 Oct; 151(16):164501. PubMed ID: 31675853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simulation study of homogeneous ice nucleation in supercooled salty water.
    Soria GD; Espinosa JR; Ramirez J; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2018 Jun; 148(22):222811. PubMed ID: 29907042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature- and pressure-dependence of the hydrogen bond network in plastic ice VII.
    Toffano A; Russo J; Rescigno M; Ranieri U; Bove LE; Martelli F
    J Chem Phys; 2022 Sep; 157(9):094502. PubMed ID: 36075706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneous ice nucleation at moderate supercooling from molecular simulation.
    Sanz E; Vega C; Espinosa JR; Caballero-Bernal R; Abascal JL; Valeriani C
    J Am Chem Soc; 2013 Oct; 135(40):15008-17. PubMed ID: 24010583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition between ices Ih and Ic in homogeneous water freezing.
    Zaragoza A; Conde MM; Espinosa JR; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2015 Oct; 143(13):134504. PubMed ID: 26450320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous nucleation rate of methane hydrate formation under experimental conditions from seeding simulations.
    Grabowska J; Blazquez S; Sanz E; Noya EG; Zeron IM; Algaba J; Miguez JM; Blas FJ; Vega C
    J Chem Phys; 2023 Mar; 158(11):114505. PubMed ID: 36948790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimum in the pressure dependence of the interfacial free energy between ice Ih and water.
    Montero de Hijes P; R Espinosa J; Vega C; Dellago C
    J Chem Phys; 2023 Mar; 158(12):124503. PubMed ID: 37003785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice is born in low-mobility regions of supercooled liquid water.
    Fitzner M; Sosso GC; Cox SJ; Michaelides A
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2009-2014. PubMed ID: 30670640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase Diagram of TIP4P/2005 Water at High Pressure.
    Hirata M; Yagasaki T; Matsumoto M; Tanaka H
    Langmuir; 2017 Oct; 33(42):11561-11569. PubMed ID: 28796510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classical nucleation theory of ice nucleation: Second-order corrections to thermodynamic parameters.
    Wang C; Wu J; Wang H; Zhang Z
    J Chem Phys; 2021 Jun; 154(23):234503. PubMed ID: 34241278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.
    Ickes L; Welti A; Hoose C; Lohmann U
    Phys Chem Chem Phys; 2015 Feb; 17(8):5514-37. PubMed ID: 25627933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical prediction of the homogeneous ice nucleation rate: disentangling thermodynamics and kinetics.
    Cheng B; Dellago C; Ceriotti M
    Phys Chem Chem Phys; 2018 Nov; 20(45):28732-28740. PubMed ID: 30412211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations.
    Sanchez-Burgos I; Tejedor AR; Vega C; Conde MM; Sanz E; Ramirez J; Espinosa JR
    J Chem Phys; 2022 Sep; 157(9):094503. PubMed ID: 36075712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.