BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38833631)

  • 1. Quasi-Solid-State Electrolyte Induced by Metallic MoS
    Li Z; Yang ZJ; Moloney J; Yu CP; Chhowalla M
    ACS Nano; 2024 Jun; 18(24):16041-16050. PubMed ID: 38833631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nontraditional Approaches To Enable High-Energy and Long-Life Lithium-Sulfur Batteries.
    Zhao C; Amine K; Xu GL
    Acc Chem Res; 2023 Oct; 56(19):2700-2712. PubMed ID: 37728762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium-Sulfur Batteries with Encapsulating Lithium Polysulfide Electrolyte.
    Liu Y; Zhao M; Hou LP; Li Z; Bi CX; Chen ZX; Cheng Q; Zhang XQ; Li BQ; Kaskel S; Huang JQ
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202303363. PubMed ID: 37249483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur Vacancies and 1T Phase-Rich MoS
    Qin J; Pei F; Wang R; Wu L; Han Y; Xiao P; Shen Y; Yuan L; Huang Y; Wang D
    Adv Mater; 2024 May; 36(21):e2312773. PubMed ID: 38349072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt-Doping of Molybdenum Disulfide for Enhanced Catalytic Polysulfide Conversion in Lithium-Sulfur Batteries.
    Liu W; Luo C; Zhang S; Zhang B; Ma J; Wang X; Liu W; Li Z; Yang QH; Lv W
    ACS Nano; 2021 Apr; 15(4):7491-7499. PubMed ID: 33834767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shielding Polysulfide Intermediates by an Organosulfur-Containing Solid Electrolyte Interphase on the Lithium Anode in Lithium-Sulfur Batteries.
    Wei JY; Zhang XQ; Hou LP; Shi P; Li BQ; Xiao Y; Yan C; Yuan H; Huang JQ
    Adv Mater; 2020 Sep; 32(37):e2003012. PubMed ID: 32761715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mo
    Zhang YJ; Xing ZY; Wang WP; Gao N; Zhao J; Yue WC; Li X; Gao YB; Xin S; Li B; Wang B
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45651-45660. PubMed ID: 34533920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Polymerization Bi-Functional Gel Polymer Electrolyte for High Performance Quasi-Solid-State Lithium-Sulfur Batteries.
    Hu L; Yang T; Zhou L; Yan X; Liu Y; Xia Y; Zhang W; Zhang J; Gan Y; He X; Xia X; Fang R; Tao X; Huang H
    Small; 2024 Jun; ():e2402862. PubMed ID: 38888118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Quasi-Solid-State Lithium-Sulfur Battery with a Controllably Solidified Cathode-Electrolyte Interface.
    Li CC; Wang WP; Feng XX; Wang YH; Zhang Y; Zhang J; Zhang L; Zheng JC; Luo Y; Chen Z; Xin S; Guo YG
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19066-19074. PubMed ID: 37036933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries.
    Luo C; Hu E; Gaskell KJ; Fan X; Gao T; Cui C; Ghose S; Yang XQ; Wang C
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14712-14720. PubMed ID: 32554498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT Simulation-Based Design of 1T-MoS
    Hojaji E; Andritsos EI; Li Z; Chhowalla M; Lekakou C; Cai Q
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.
    Liu M; Ren Y; Zhou D; Jiang H; Kang F; Zhao T
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2526-2534. PubMed ID: 28026937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embedding Cobalt Atom Clusters in CNT-Wired MoS
    Ma Z; Liu Y; Gautam J; Liu W; Chishti AN; Gu J; Yang G; Wu Z; Xie J; Chen M; Ni L; Diao G
    Small; 2021 Oct; 17(39):e2102710. PubMed ID: 34418294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1T-rich MoS
    He LJ; Liu J; Lv TT; Wei AC; Yuan TQ
    J Colloid Interface Sci; 2024 Oct; 671():175-183. PubMed ID: 38797143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical High-Energy Li-S Batteries.
    Zhao C; Xu GL; Zhao T; Amine K
    Angew Chem Int Ed Engl; 2020 Sep; 59(40):17634-17640. PubMed ID: 32645250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Heterostructured Gel Polymer Electrolyte Modified by MoS
    Chi Z; Ding J; Ding C; Cui B; Wang W; Wang G
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39342-39350. PubMed ID: 37556723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile In Situ Chemical Cross-Linking Gel Polymer Electrolyte, which Confines the Shuttle Effect with High Ionic Conductivity and Li-Ion Transference Number for Quasi-Solid-State Lithium-Sulfur Battery.
    Zhang T; Zhang J; Yang S; Li Y; Dong R; Yuan J; Liu Y; Wu Z; Song Y; Zhong Y; Xiang W; Chen Y; Zhong B; Guo X
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44497-44508. PubMed ID: 34506122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.