These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38833800)

  • 1. A deep learning approach for generating intracranial pressure waveforms from extracranial signals routinely measured in the intensive care unit.
    Nair SS; Guo A; Boen J; Aggarwal A; Chahal O; Tandon A; Patel M; Sankararaman S; Durr NJ; Azad TD; Pirracchio R; Stevens RD
    Comput Biol Med; 2024 Jul; 177():108677. PubMed ID: 38833800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imputation of the continuous arterial line blood pressure waveform from non-invasive measurements using deep learning.
    Hill BL; Rakocz N; Rudas Á; Chiang JN; Wang S; Hofer I; Cannesson M; Halperin E
    Sci Rep; 2021 Aug; 11(1):15755. PubMed ID: 34344934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Spectral Approach to Model-Based Noninvasive Intracranial Pressure Estimation.
    Jaishankar R; Fanelli A; Filippidis A; Vu T; Holsapple J; Heldt T
    IEEE J Biomed Health Inform; 2020 Aug; 24(8):2398-2406. PubMed ID: 31880569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully automated, real-time, calibration-free, continuous noninvasive estimation of intracranial pressure in children.
    Fanelli A; Vonberg FW; LaRovere KL; Walsh BK; Smith ER; Robinson S; Tasker RC; Heldt T
    J Neurosurg Pediatr; 2019 Aug; 24(5):509-519. PubMed ID: 31443086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks.
    Cheng J; Xu Y; Song R; Liu Y; Li C; Chen X
    Comput Biol Med; 2021 Nov; 138():104877. PubMed ID: 34571436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A practical algorithm to reduce false critical ECG alarms using arterial blood pressure and/or photoplethysmogram waveforms.
    Zong W; Nielsen L; Gross B; Brea J; Frassica J
    Physiol Meas; 2016 Aug; 37(8):1355-69. PubMed ID: 27455375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired cerebrovascular reactivity after acute traumatic brain injury can be detected by wavelet phase coherence analysis of the intracranial and arterial blood pressure signals.
    Kvandal P; Sheppard L; Landsverk SA; Stefanovska A; Kirkeboen KA
    J Clin Monit Comput; 2013 Aug; 27(4):375-83. PubMed ID: 23748602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracranial pressure monitoring in patients with acute brain injury in the intensive care unit (SYNAPSE-ICU): an international, prospective observational cohort study.
    Robba C; Graziano F; Rebora P; Elli F; Giussani C; Oddo M; Meyfroidt G; Helbok R; Taccone FS; Prisco L; Vincent JL; Suarez JI; Stocchetti N; Citerio G;
    Lancet Neurol; 2021 Jul; 20(7):548-558. PubMed ID: 34146513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach.
    Athaya T; Choi S
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms.
    Poh MZ; Poh YC; Chan PH; Wong CK; Pun L; Leung WW; Wong YF; Wong MM; Chu DW; Siu CW
    Heart; 2018 Dec; 104(23):1921-1928. PubMed ID: 29853485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography.
    Kim DK; Kim YT; Kim H; Kim DJ
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3697-3707. PubMed ID: 35511844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a novel noninvasive ICP monitoring device in patients undergoing invasive ICP monitoring: preliminary results.
    Ganslandt O; Mourtzoukos S; Stadlbauer A; Sommer B; Rammensee R
    J Neurosurg; 2018 Jun; 128(6):1653-1660. PubMed ID: 28784032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An algorithm to detect dicrotic notch in arterial blood pressure and photoplethysmography waveforms using the iterative envelope mean method.
    Pal R; Rudas A; Kim S; Chiang JN; Braney A; Cannesson M
    medRxiv; 2024 Mar; ():. PubMed ID: 38496617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An algorithm to detect dicrotic notch in arterial blood pressure and photoplethysmography waveforms using the iterative envelope mean method.
    Pal R; Rudas A; Kim S; Chiang JN; Barney A; Cannesson M
    Comput Methods Programs Biomed; 2024 Jun; 254():108283. PubMed ID: 38901273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracranial hypertension: what additional information can be derived from ICP waveform after head injury?
    Balestreri M; Czosnyka M; Steiner LA; Schmidt E; Smielewski P; Matta B; Pickard JD
    Acta Neurochir (Wien); 2004 Feb; 146(2):131-41. PubMed ID: 14963745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peak detection in intracranial pressure signal waveforms: a comparative study.
    Wei M; Krakauskaite S; Subramanian S; Scalzo F
    Biomed Eng Online; 2024 Jun; 23(1):61. PubMed ID: 38915091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new index derived from the cerebrovascular pressure transmission and correlated with consciousness recovery in severely head-injured intensive care patients.
    Roustan JP; Neveu D; Falquet Y; Barral L; Chardon P; Capdevila X
    Anesth Analg; 2009 Dec; 109(6):1883-91. PubMed ID: 19923517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continual Learning for Cuffless Blood Pressure Measurement using PPG and ECG Signals.
    Zhang C; Shen Z; Ding X
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is non-invasive monitoring of intracranial pressure waveform analysis possible? Preliminary results of a comparative study of non-invasive vs. invasive intracranial slow-wave waveform analysis monitoring in patients with traumatic brain injury.
    Fountas KN; Sitkauskas A; Feltes CH; Kapsalaki EZ; Dimopoulos VG; Kassam M; Grigorian AA; Robinson JS; Ragauskas A
    Med Sci Monit; 2005 Feb; 11(2):CR58-63. PubMed ID: 15668632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-hospital Predictors of Impaired ICP Trends in Continuous Monitoring of Paediatric Traumatic Brain Injury Patients.
    Young AMH; Donnelly J; Liu X; Guilfoyle MR; Carew M; Cabeleira M; Cardim D; Garnett MR; Fernandes HM; Haubrich C; Smielewski P; Czosnyka M; Hutchinson PJ; Agrawal S
    Acta Neurochir Suppl; 2018; 126():7-10. PubMed ID: 29492522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.