These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38833816)

  • 1. Data-driven online prediction of remaining fatigue life of a steel plate based on nonlinear ultrasonic monitoring.
    Sun D; Zhu W; Xiang Y; Xuan FZ
    Ultrasonics; 2024 May; 142():107356. PubMed ID: 38833816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring Fatigue Damage of Orthotropic Steel Decks Using Nonlinear Ultrasonic Waves.
    Liu J; Zheng F; Shen W; Li D
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Method for Early Fatigue Damage Diagnosis in 316L Stainless Steel Formed by Selective Laser Melting Technology.
    Yan X; Tang X
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Investigation of the Acoustic Nonlinear Behavior in Granular Polymer Bonded Explosives with Progressive Fatigue Damage.
    Yang Z; Tian Y; Li W; Zhou H; Zhang W; Li J
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28773017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavefield imaging of nonlinear ultrasonic Lamb waves for visualizing fatigue micro-cracks.
    Xu H; Liu L; Li X; Xiang Y; Xuan FZ
    Ultrasonics; 2024 Mar; 138():107214. PubMed ID: 38056320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Characterization of Fatigue Damage of 316L Stainless Steel Parts Formed by Selective Laser Melting with Harmonic Generation Technique.
    Qiao R; Yan X
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic Statistics-Based Endurance Life Prediction of Bridge Structures.
    Zhang Y
    Comput Intell Neurosci; 2022; 2022():8035028. PubMed ID: 35755721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Sensing Nonlinear Ultrasonic Fatigue Crack Detection under Temperature Variation
    Kim N; Jang K; An YK
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of 316 stainless steel low-cycle fatigue life based on machine learning.
    Duan H; Cao M; Liu L; Yue S; He H; Zhao Y; Zhang Z; Liu Y
    Sci Rep; 2023 Apr; 13(1):6753. PubMed ID: 37185593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristic Parameters of Magnetostrictive Guided Wave Testing for Fatigue Damage of Steel Strands.
    Chen X; Xu J; Li Y; Wang S
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cubic nonlinearity parameter measurement and material degradation detection using nonlinear ultrasonic three-wave mixing.
    Sampath S; Sohn H
    Ultrasonics; 2022 Apr; 121():106670. PubMed ID: 35026609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Necessary Conditions for Nonlinear Ultrasonic Modulation Generation Given a Localized Fatigue Crack in a Plate-Like Structure.
    Lim HJ; Sohn H
    Materials (Basel); 2017 Feb; 10(3):. PubMed ID: 28772608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic Nonlinearity Experiment due to Plastic Deformation of Aluminum Plate Due to Bending Damage.
    Park J; Aslam M; Lee J
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engine remaining useful life prediction model based on R-Vine copula with multi-sensor data.
    Liu S; Jiang H
    Heliyon; 2023 Jun; 9(6):e17118. PubMed ID: 37389066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Study on Fatigue State Evaluation of Rail by the Use of Ultrasonic Nonlinearity.
    Zhu B; Lee J
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear Lamb waves for fatigue damage identification in FRP-reinforced steel plates.
    Wang Y; Guan R; Lu Y
    Ultrasonics; 2017 Sep; 80():87-95. PubMed ID: 28511082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Health Monitoring (SHM) and Determination of Surface Defects in Large Metallic Structures using Ultrasonic Guided Waves.
    Abbas M; Shafiee M
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation.
    Hong M; Su Z; Wang Q; Cheng L; Qing X
    Ultrasonics; 2014 Mar; 54(3):770-8. PubMed ID: 24156928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cumulative Fatigue Damage of Composite Laminates: Engineering Rule and Life Prediction Aspect.
    Batsoulas ND; Giannopoulos GI
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue Crack Propagation Prediction of Corroded Steel Plate Strengthened with Carbon Fiber Reinforced Polymer (CFRP) Plates.
    Li A; Wang L; Xu S
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.