BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38833887)

  • 1. Discrimination of internal crack for rice seeds using near infrared spectroscopy.
    Wang L; Wang W; Huang Z; Zhen S; Wang R
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 319():124578. PubMed ID: 38833887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Rice Varieties and Transgenic Characteristics Based on Near-Infrared Diffuse Reflectance Spectroscopy and Chemometrics.
    Hao Y; Geng P; Wu W; Wen Q; Rao M
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31847134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Discrimination of Varieties of Cabbage with Near Infrared Spectra Based on Principal Component Analysis and Successive Projections Algorithm].
    Luo W; Du YZ; Zhang HL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3536-41. PubMed ID: 30198665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics.
    Liu W; Liu C; Hu X; Yang J; Zheng L
    Food Chem; 2016 Nov; 210():415-21. PubMed ID: 27211665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Classification of Rice Blast Resistant Seed Based on Ranman Spectroscopy and SVM.
    He Y; Zhang W; Ma Y; Li J; Ma B
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of Trichosanthis Fructus from Different Geographical Origins Using Near Infrared Spectroscopy Coupled with Chemometric Techniques.
    Xu L; Sun W; Wu C; Ma Y; Chao Z
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31010152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds.
    Zhang L; Sun H; Rao Z; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117973. PubMed ID: 31887678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination of New and Aged Seeds Based on On-Line Near-Infrared Spectroscopy Technology Combined with Machine Learning.
    Zhu Y; Fan S; Zuo M; Zhang B; Zhu Q; Kong J
    Foods; 2024 May; 13(10):. PubMed ID: 38790869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing Machine Learning and PLSDA Algorithms for Durian Pulp Classification Using Inline NIR Spectra.
    Pokhrel DR; Sirisomboon P; Khurnpoon L; Posom J; Saechua W
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics.
    Teye E; Amuah CLY; McGrath T; Elliott C
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():147-154. PubMed ID: 30933778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A calibration transfer optimized single kernel near-infrared spectroscopic method.
    Xu Z; Fan S; Liu J; Liu B; Tao L; Wu J; Hu S; Zhao L; Wang Q; Wu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117098. PubMed ID: 31129498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Rapid identification of geographic origins of Zingiberis Rhizoma by NIRS combined with chemometrics and machine learning algorithms].
    Yu DX; Guo S; Zhang X; Yan H; Zhang ZY; Li HY; Yang J; Duan JA
    Zhongguo Zhong Yao Za Zhi; 2022 Sep; 47(17):4583-4592. PubMed ID: 36164863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of transgenic soybean seeds by terahertz spectroscopy.
    Liu W; Liu C; Chen F; Yang J; Zheng L
    Sci Rep; 2016 Oct; 6():35799. PubMed ID: 27782205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and robust discrimination of almonds (Prunus amygdalus) with respect to their bitterness by using near infrared and partial least squares-discriminant analysis.
    Borràs E; Amigo JM; van den Berg F; Boqué R; Busto O
    Food Chem; 2014 Jun; 153():15-9. PubMed ID: 24491694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and non-destructive analysis for the identification of multi-grain rice seeds with near-infrared spectroscopy.
    Chen J; Li M; Pan T; Pang L; Yao L; Zhang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():179-185. PubMed ID: 31035128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of NIR spectroscopy and algorithms for rapid differentiation between one-year and two-year stored rice.
    Shi S; Feng J; Yang L; Xing J; Pan G; Tang J; Wang J; Liu J; Cao C; Jiang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122343. PubMed ID: 36657285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of structurally related commercial contrast media by near infrared spectroscopy.
    Yip WL; Soosainather TC; Dyrstad K; Sande SA
    J Pharm Biomed Anal; 2014 Mar; 90():148-60. PubMed ID: 24374816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis.
    Kong W; Zhang C; Liu F; Nie P; He Y
    Sensors (Basel); 2013 Jul; 13(7):8916-27. PubMed ID: 23857260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of fraud in high-quality rice by near-infrared spectroscopy.
    Liu Y; Li Y; Peng Y; Yang Y; Wang Q
    J Food Sci; 2020 Sep; 85(9):2773-2782. PubMed ID: 32713030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geographical origin identification of Khao Dawk Mali 105 rice using combination of FT-NIR spectroscopy and machine learning algorithms.
    Lapcharoensuk R; Moul C
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 318():124480. PubMed ID: 38781824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.