These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38833979)
1. Prediction of the bioaccessibility and accumulation of cadmium in the soil-rice-human system based on optimized DGT and BCR coupled models. Chen R; Hu M; Cheng N; Shi R; Ma T; Wang W; Huang W Ecotoxicol Environ Saf; 2024 Jul; 280():116509. PubMed ID: 38833979 [TBL] [Abstract][Full Text] [Related]
2. Predictive and estimation model of Cd, Ni, and Zn bioaccumulations in maize based on diffusive gradients in thin films. Chen R; Mu X; Liu J; Cheng N; Shi R; Hu M; Chen Z; Wang H Sci Total Environ; 2023 Feb; 860():160523. PubMed ID: 36446665 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China. Wen Y; Li W; Yang Z; Zhuo X; Guan DX; Song Y; Guo C; Ji J Environ Pollut; 2020 Mar; 258():113645. PubMed ID: 31796323 [TBL] [Abstract][Full Text] [Related]
4. Predictive model for cadmium uptake by maize and rice grains on the basis of bioconcentration factor and the diffusive gradients in thin-films technique. Chen R; Cheng N; Ding G; Ren F; Lv J; Shi R Environ Pollut; 2021 Nov; 289():117841. PubMed ID: 34325094 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of cadmium (Cd) transfer from paddy soil to rice (Oryza sativa L.) using DGT in comparison with conventional chemical methods: derivation of models to predict Cd accumulation in rice grains. Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Fang X; Gao N; Hu J Environ Sci Pollut Res Int; 2020 May; 27(13):14953-14962. PubMed ID: 32062776 [TBL] [Abstract][Full Text] [Related]
6. DGT methodology is more sensitive than conventional extraction strategies in assessing amendment-induced soil cadmium availability to rice. Luo H; Du P; Shi J; Yang B; Liang T; Wang P; Chen J; Zhang Y; He Y; Jia X; Duan G; Li F Sci Total Environ; 2021 Mar; 760():143949. PubMed ID: 33340737 [TBL] [Abstract][Full Text] [Related]
7. Combining DGT with bioaccessibility methods as tool to estimate potential bioavailability and release of PTEs in the urban soil environment. Li Y; Ajmone-Marsan F; Padoan E Sci Total Environ; 2023 Jan; 857(Pt 3):159597. PubMed ID: 36280078 [TBL] [Abstract][Full Text] [Related]
8. Characteristics and DGT Based Bioavailability of Cadmium in the Soil-Crop Systems from the East Edge of the Dongting Lake, China. Guo J; Wei Z; Zhang C; Li C; Dai L; Lu X; Xiao K; Mao X; Yang X; Jing Y; Zhang J; Chen W; Qi S Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612351 [TBL] [Abstract][Full Text] [Related]
9. Comparing CaCl Ma Q; Zhao W; Guan DX; Teng HH; Ji J; Ma LQ Environ Pollut; 2020 May; 260():114042. PubMed ID: 32000029 [TBL] [Abstract][Full Text] [Related]
10. Assessing soil remediation effect of Cr and Pb based on bioavailability using DGT, BCR and standardized determination method. Chen R; Yang J; Cai X; Liu Z; Huang W; Shi R; Ma T Sci Total Environ; 2024 Nov; 953():175947. PubMed ID: 39260481 [TBL] [Abstract][Full Text] [Related]
11. Application of DGT/DIFS to assess bioavailable Cd to maize and its release in agricultural soils. Chen R; Gao T; Cheng N; Ding G; Wang Q; Shi R; Hu G; Cai X J Hazard Mater; 2021 Jun; 411():124837. PubMed ID: 33450634 [TBL] [Abstract][Full Text] [Related]
12. Cadmium mobility and health risk assessment in the soil-rice-human system using in vitro biaccessibility and in vivo bioavailability assay: Two year field experiment. Lin Q; Hamid Y; Yang H; Jiang J; Shan A; Wang M; Hussain B; Feng Y; Li T; He Z; Yang X Sci Total Environ; 2023 Apr; 867():161564. PubMed ID: 36640893 [TBL] [Abstract][Full Text] [Related]
13. Prediction model for Cd accumulation of rice (Oryza sativa L.) based on extractable Cd in soils and prediction for high Cd-risk regions of southern Zhejiang Province, China. Kong F; Lu S Environ Sci Pollut Res Int; 2023 Feb; 30(6):15964-15974. PubMed ID: 36175730 [TBL] [Abstract][Full Text] [Related]
14. The Evaluation on the Cadmium Net Concentration for Soil Ecosystems. Yao Y; Wang PF; Wang C; Hou J; Miao LZ Int J Environ Res Public Health; 2017 Mar; 14(3):. PubMed ID: 28287500 [TBL] [Abstract][Full Text] [Related]
15. Bioaccumulation and Health Risk Assessment of Heavy Metals in the Soil-Rice System in a Typical Seleniferous Area in Central China. Chang C; Yin R; Zhang H; Yao L Environ Toxicol Chem; 2019 Jul; 38(7):1577-1584. PubMed ID: 30994945 [TBL] [Abstract][Full Text] [Related]
16. A Diffusive Gradient-in-Thin-Film Technique for Evaluation of the Bioavailability of Cd in Soil Contaminated with Cd and Pb. Wang P; Wang T; Yao Y; Wang C; Liu C; Yuan Y Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27271644 [TBL] [Abstract][Full Text] [Related]
17. Assessment of Cd availability in rice cultivation (Oryza sativa): Effects of amendments and the spatiotemporal chemical changes in the rhizosphere and bulk soil. Zeng T; Khaliq MA; Li H; Jayasuriya P; Guo J; Li Y; Wang G Ecotoxicol Environ Saf; 2020 Jun; 196():110490. PubMed ID: 32276161 [TBL] [Abstract][Full Text] [Related]
18. [Predicting the cadmium bioavailability in the soil of sugarcane field based on the diffusive gradients in thin films with binding phase of sodium polyacrylate]. Wang FL; Song NN; Zhao YJ; Zhang CB; Shen Y; Liu ZQ Huan Jing Ke Xue; 2012 Oct; 33(10):3562-8. PubMed ID: 23233989 [TBL] [Abstract][Full Text] [Related]
19. [Effect Factors and Model Prediction of Soil Heavy Metal Bioaccessibility]. Zhang JW; Tian B; Luo JJ; Wu F; Zhang C; Liu ZT; Wang XN Huan Jing Ke Xue; 2022 Jul; 43(7):3811-3824. PubMed ID: 35791564 [TBL] [Abstract][Full Text] [Related]
20. [Main Control Factors of Cadmium Content in Rice in Carbonate Rock Region of Guangxi Based on the DGT Technique]. Song B; Xiao NC; Ma LJ; Li L; Chen TB Huan Jing Ke Xue; 2022 Jan; 43(1):463-471. PubMed ID: 34989531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]