BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38834100)

  • 1. Climate change impacts of bioenergy technologies: A comparative consequential LCA of sustainable fuels production with CCUS.
    Krogh A; Junginger M; Shen L; Grue J; Pedersen TH
    Sci Total Environ; 2024 Aug; 940():173660. PubMed ID: 38834100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 2023 Latin America report of the
    Hartinger SM; Palmeiro-Silva YK; Llerena-Cayo C; Blanco-Villafuerte L; Escobar LE; Diaz A; Sarmiento JH; Lescano AG; Melo O; Rojas-Rueda D; Takahashi B; Callaghan M; Chesini F; Dasgupta S; Posse CG; Gouveia N; Martins de Carvalho A; Miranda-Chacón Z; Mohajeri N; Pantoja C; Robinson EJZ; Salas MF; Santiago R; Sauma E; Santos-Vega M; Scamman D; Sergeeva M; Souza de Camargo T; Sorensen C; Umaña JD; Yglesias-González M; Walawender M; Buss D; Romanello M
    Lancet Reg Health Am; 2024 May; 33():100746. PubMed ID: 38800647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life cycle assessment of alternative biogas utilisations, including carbon capture and storage or utilisation.
    Varling AS; Christensen TH; Bisinella V
    Waste Manag; 2023 Feb; 157():168-179. PubMed ID: 36549176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches.
    Glithero NJ; Ramsden SJ; Wilson P
    Agric Syst; 2012 Jun; 109():53-64. PubMed ID: 25540473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bringing value to the chemical industry from capture, storage and use of CO
    Aldaco R; Butnar I; Margallo M; Laso J; Rumayor M; Dominguez-Ramos A; Irabien A; Dodds PE
    Sci Total Environ; 2019 May; 663():738-753. PubMed ID: 30738256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.
    de Jong S; Antonissen K; Hoefnagels R; Lonza L; Wang M; Faaij A; Junginger M
    Biotechnol Biofuels; 2017; 10():64. PubMed ID: 28293294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change impacts of introducing carbon capture and utilisation (CCU) in waste incineration.
    Christensen TH; Bisinella V
    Waste Manag; 2021 May; 126():754-770. PubMed ID: 33887697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life Cycle Greenhouse Gas Emissions of CO
    Liu L; Miranda MM; Bielicki JM; Ellis BR; Johnson JX
    Environ Sci Technol; 2024 Jan; 58(4):1882-1893. PubMed ID: 38214663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: A review.
    Wang Y; Pan Z; Zhang W; Borhani TN; Li R; Zhang Z
    Environ Res; 2022 May; 207():112219. PubMed ID: 34656638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment of novel thermochemical - biochemical biomass-to-liquid pathways for sustainable aviation and maritime fuel production.
    Kourkoumpas DS; Βon A; Sagani A; Atsonios K; Grammelis P; Karellas S; Kakaras E
    Bioresour Technol; 2024 Feb; 393():130115. PubMed ID: 38013031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.
    McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL
    Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change mitigation in British Columbia's forest sector: GHG reductions, costs, and environmental impacts.
    Smyth CE; Xu Z; Lemprière TC; Kurz WA
    Carbon Balance Manag; 2020 Oct; 15(1):21. PubMed ID: 33001303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle environmental impacts of biogas production and utilisation substituting for grid electricity, natural gas grid and transport fuels.
    Natividad Pérez-Camacho M; Curry R; Cromie T
    Waste Manag; 2019 Jul; 95():90-101. PubMed ID: 31351658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process.
    Bacenetti J; Negri M; Fiala M; González-García S
    Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regionalized Life Cycle Greenhouse Gas Emissions of Forest Biomass Use for Electricity Generation in the United States.
    Xu H; Latta G; Lee U; Lewandrowski J; Wang M
    Environ Sci Technol; 2021 Nov; 55(21):14806-14816. PubMed ID: 34652143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renewable carbon feedstock for polymers: environmental benefits from synergistic use of biomass and CO
    Bachmann M; Kätelhön A; Winter B; Meys R; Müller LJ; Bardow A
    Faraday Discuss; 2021 Jul; 230():227-246. PubMed ID: 33889872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Life Cycle Assessment of Energy Technologies under Different Greenhouse Gas Concentration Pathways.
    Lan K; Yao Y
    Environ Sci Technol; 2022 Jan; 56(2):1395-1404. PubMed ID: 34870423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental impacts of various biomass supply chains for the provision of raw wood in Bavaria, Germany, with focus on climate change.
    Klein D; Wolf C; Schulz C; Weber-Blaschke G
    Sci Total Environ; 2016 Jan; 539():45-60. PubMed ID: 26352646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.
    Rehl T; Müller J
    J Environ Manage; 2013 Jan; 114():13-25. PubMed ID: 23201601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.