These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 38834100)
1. Climate change impacts of bioenergy technologies: A comparative consequential LCA of sustainable fuels production with CCUS. Krogh A; Junginger M; Shen L; Grue J; Pedersen TH Sci Total Environ; 2024 Aug; 940():173660. PubMed ID: 38834100 [TBL] [Abstract][Full Text] [Related]
2. Life cycle assessment of alternative biogas utilisations, including carbon capture and storage or utilisation. Varling AS; Christensen TH; Bisinella V Waste Manag; 2023 Feb; 157():168-179. PubMed ID: 36549176 [TBL] [Abstract][Full Text] [Related]
3. Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches. Glithero NJ; Ramsden SJ; Wilson P Agric Syst; 2012 Jun; 109():53-64. PubMed ID: 25540473 [TBL] [Abstract][Full Text] [Related]
4. Bringing value to the chemical industry from capture, storage and use of CO Aldaco R; Butnar I; Margallo M; Laso J; Rumayor M; Dominguez-Ramos A; Irabien A; Dodds PE Sci Total Environ; 2019 May; 663():738-753. PubMed ID: 30738256 [TBL] [Abstract][Full Text] [Related]
5. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. de Jong S; Antonissen K; Hoefnagels R; Lonza L; Wang M; Faaij A; Junginger M Biotechnol Biofuels; 2017; 10():64. PubMed ID: 28293294 [TBL] [Abstract][Full Text] [Related]
6. Climate change impacts of introducing carbon capture and utilisation (CCU) in waste incineration. Christensen TH; Bisinella V Waste Manag; 2021 May; 126():754-770. PubMed ID: 33887697 [TBL] [Abstract][Full Text] [Related]
7. Life Cycle Greenhouse Gas Emissions of CO Liu L; Miranda MM; Bielicki JM; Ellis BR; Johnson JX Environ Sci Technol; 2024 Jan; 58(4):1882-1893. PubMed ID: 38214663 [TBL] [Abstract][Full Text] [Related]
8. Life cycle assessment of combustion-based electricity generation technologies integrated with carbon capture and storage: A review. Wang Y; Pan Z; Zhang W; Borhani TN; Li R; Zhang Z Environ Res; 2022 May; 207():112219. PubMed ID: 34656638 [TBL] [Abstract][Full Text] [Related]
9. Life cycle assessment of novel thermochemical - biochemical biomass-to-liquid pathways for sustainable aviation and maritime fuel production. Kourkoumpas DS; Βon A; Sagani A; Atsonios K; Grammelis P; Karellas S; Kakaras E Bioresour Technol; 2024 Feb; 393():130115. PubMed ID: 38013031 [TBL] [Abstract][Full Text] [Related]
10. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063 [TBL] [Abstract][Full Text] [Related]
11. Climate change mitigation in British Columbia's forest sector: GHG reductions, costs, and environmental impacts. Smyth CE; Xu Z; Lemprière TC; Kurz WA Carbon Balance Manag; 2020 Oct; 15(1):21. PubMed ID: 33001303 [TBL] [Abstract][Full Text] [Related]
12. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Adler PR; Del Grosso SJ; Parton WJ Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388 [TBL] [Abstract][Full Text] [Related]
13. Life cycle environmental impacts of biogas production and utilisation substituting for grid electricity, natural gas grid and transport fuels. Natividad Pérez-Camacho M; Curry R; Cromie T Waste Manag; 2019 Jul; 95():90-101. PubMed ID: 31351658 [TBL] [Abstract][Full Text] [Related]
14. Spatially Varying Costs of GHG Abatement with Alternative Cellulosic Feedstocks for Sustainable Aviation Fuels. Fan X; Khanna M; Lee Y; Kent J; Shi R; Guest JS; Lee D Environ Sci Technol; 2024 Jul; 58(26):11352-11362. PubMed ID: 38899559 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Bacenetti J; Negri M; Fiala M; González-García S Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800 [TBL] [Abstract][Full Text] [Related]
16. Regionalized Life Cycle Greenhouse Gas Emissions of Forest Biomass Use for Electricity Generation in the United States. Xu H; Latta G; Lee U; Lewandrowski J; Wang M Environ Sci Technol; 2021 Nov; 55(21):14806-14816. PubMed ID: 34652143 [TBL] [Abstract][Full Text] [Related]
17. Renewable carbon feedstock for polymers: environmental benefits from synergistic use of biomass and CO Bachmann M; Kätelhön A; Winter B; Meys R; Müller LJ; Bardow A Faraday Discuss; 2021 Jul; 230():227-246. PubMed ID: 33889872 [TBL] [Abstract][Full Text] [Related]
18. Dynamic Life Cycle Assessment of Energy Technologies under Different Greenhouse Gas Concentration Pathways. Lan K; Yao Y Environ Sci Technol; 2022 Jan; 56(2):1395-1404. PubMed ID: 34870423 [TBL] [Abstract][Full Text] [Related]
19. Environmental impacts of various biomass supply chains for the provision of raw wood in Bavaria, Germany, with focus on climate change. Klein D; Wolf C; Schulz C; Weber-Blaschke G Sci Total Environ; 2016 Jan; 539():45-60. PubMed ID: 26352646 [TBL] [Abstract][Full Text] [Related]
20. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways. Rehl T; Müller J J Environ Manage; 2013 Jan; 114():13-25. PubMed ID: 23201601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]