These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38834145)
1. Cognitive driven gait freezing phase detection and classification for neuro-rehabilitated patients using machine learning algorithms. Khamparia A; Gupta D; Maashi M; Mengash HA J Neurosci Methods; 2024 Sep; 409():110183. PubMed ID: 38834145 [TBL] [Abstract][Full Text] [Related]
2. Classification of foot drop gait characteristic due to lumbar radiculopathy using machine learning algorithms. Sharif Bidabadi S; Murray I; Lee GYF; Morris S; Tan T Gait Posture; 2019 Jun; 71():234-240. PubMed ID: 31082655 [TBL] [Abstract][Full Text] [Related]
3. Prediction of Freezing of Gait in Parkinson's Disease Using Wearables and Machine Learning. Borzì L; Mazzetta I; Zampogna A; Suppa A; Olmo G; Irrera F Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477323 [TBL] [Abstract][Full Text] [Related]
4. A novel single-sensor-based method for the detection of gait-cycle breakdown and freezing of gait in Parkinson's disease. Chomiak T; Xian W; Pei Z; Hu B J Neural Transm (Vienna); 2019 Aug; 126(8):1029-1036. PubMed ID: 31154512 [TBL] [Abstract][Full Text] [Related]
5. Using machine learning algorithms to detect fear of falling in people with multiple sclerosis in standardized gait analysis. Schumann P; Trentzsch K; Stölzer-Hutsch H; Jochim T; Scholz M; Malberg H; Ziemssen T Mult Scler Relat Disord; 2024 Aug; 88():105721. PubMed ID: 38885599 [TBL] [Abstract][Full Text] [Related]
6. Freezing-of-Gait Detection Using Wearable Sensor Technology and Possibilistic K-Nearest-Neighbor Algorithm. Tahafchi P; Judy JW Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4246-4249. PubMed ID: 31946806 [TBL] [Abstract][Full Text] [Related]
7. Metric learning for Parkinsonian identification from IMU gait measurements. Cuzzolin F; Sapienza M; Esser P; Saha S; Franssen MM; Collett J; Dawes H Gait Posture; 2017 May; 54():127-132. PubMed ID: 28288333 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of Three Machine Learning Algorithms for the Automatic Classification of EMG Patterns in Gait Disorders. Fricke C; Alizadeh J; Zakhary N; Woost TB; Bogdan M; Classen J Front Neurol; 2021; 12():666458. PubMed ID: 34093413 [TBL] [Abstract][Full Text] [Related]
9. Smartphone IMU Sensors for Human Identification through Hip Joint Angle Analysis. Andersson R; Bermejo-García J; Agujetas R; Cronhjort M; Chilo J Sensors (Basel); 2024 Jul; 24(15):. PubMed ID: 39123816 [TBL] [Abstract][Full Text] [Related]
10. Classification of Parkinson's disease and essential tremor based on balance and gait characteristics from wearable motion sensors via machine learning techniques: a data-driven approach. Moon S; Song HJ; Sharma VD; Lyons KE; Pahwa R; Akinwuntan AE; Devos H J Neuroeng Rehabil; 2020 Sep; 17(1):125. PubMed ID: 32917244 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous time-frequency analysis of gait signals of both legs in classifying neurodegenerative diseases. Torghabeh FA; Moghadam EA; Hosseini SA Gait Posture; 2024 Sep; 113():443-451. PubMed ID: 39111227 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning Based Abnormal Gait Classification with IMU Considering Joint Impairment. Hwang S; Kim J; Yang S; Moon HJ; Cho KH; Youn I; Sung JK; Han S Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275482 [TBL] [Abstract][Full Text] [Related]
13. Classification of inertial sensor-based gait patterns of orthopaedic conditions using machine learning: A pilot study. Dammeyer C; Nüesch C; Visscher RMS; Kim YK; Ismailidis P; Wittauer M; Stoffel K; Acklin Y; Egloff C; Netzer C; Mündermann A J Orthop Res; 2024 Jul; 42(7):1463-1472. PubMed ID: 38341759 [TBL] [Abstract][Full Text] [Related]
14. Modeling, Detecting, and Tracking Freezing of Gait in Parkinson Disease Using Inertial Sensors. Prateek GV; Skog I; McNeely ME; Duncan RP; Earhart GM; Nehorai A IEEE Trans Biomed Eng; 2018 Oct; 65(10):2152-2161. PubMed ID: 29989948 [TBL] [Abstract][Full Text] [Related]
15. Machine learning applied to gait analysis data in cerebral palsy and stroke: A systematic review. Samadi Kohnehshahri F; Merlo A; Mazzoli D; Bò MC; Stagni R Gait Posture; 2024 Jun; 111():105-121. PubMed ID: 38663321 [TBL] [Abstract][Full Text] [Related]
16. Measuring freezing of gait during daily-life: an open-source, wearable sensors approach. Mancini M; Shah VV; Stuart S; Curtze C; Horak FB; Safarpour D; Nutt JG J Neuroeng Rehabil; 2021 Jan; 18(1):1. PubMed ID: 33397401 [TBL] [Abstract][Full Text] [Related]
17. Explainable Deep-Learning-Based Gait Analysis of Hip-Knee Cyclogram for the Prediction of Adolescent Idiopathic Scoliosis Progression. Kim YG; Kim S; Park JH; Yang S; Jang M; Yun YJ; Cho JS; You S; Jang SH Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065902 [TBL] [Abstract][Full Text] [Related]
18. Clinical and methodological challenges for assessing freezing of gait: Future perspectives. Mancini M; Bloem BR; Horak FB; Lewis SJG; Nieuwboer A; Nonnekes J Mov Disord; 2019 Jun; 34(6):783-790. PubMed ID: 31046191 [TBL] [Abstract][Full Text] [Related]
19. A robust machine learning enabled decomposition of shear ground reaction forces during the double contact phase of walking. Bastien GJ; Gosseye TP; Penta M Gait Posture; 2019 Sep; 73():221-227. PubMed ID: 31374439 [TBL] [Abstract][Full Text] [Related]
20. Input representations and classification strategies for automated human gait analysis. Slijepcevic D; Zeppelzauer M; Schwab C; Raberger AM; Breiteneder C; Horsak B Gait Posture; 2020 Feb; 76():198-203. PubMed ID: 31862670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]