BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38834299)

  • 21. Ultrastructural Evidence of Direct Viral Damage to the Olfactory Complex in Patients Testing Positive for SARS-CoV-2.
    Morbini P; Benazzo M; Verga L; Pagella FG; Mojoli F; Bruno R; Marena C
    JAMA Otolaryngol Head Neck Surg; 2020 Oct; 146(10):972-973. PubMed ID: 32790835
    [No Abstract]   [Full Text] [Related]  

  • 22. Olfactory epithelium histopathological findings in long-term coronavirus disease 2019 related anosmia.
    Vaira LA; Hopkins C; Sandison A; Manca A; Machouchas N; Turilli D; Lechien JR; Barillari MR; Salzano G; Cossu A; Saussez S; De Riu G
    J Laryngol Otol; 2020 Dec; 134(12):1123-1127. PubMed ID: 33190655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SARS-CoV-2: Olfaction, Brain Infection, and the Urgent Need for Clinical Samples Allowing Earlier Virus Detection.
    Butowt R; Bilinska K
    ACS Chem Neurosci; 2020 May; 11(9):1200-1203. PubMed ID: 32283006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microglia Do Not Restrict SARS-CoV-2 Replication following Infection of the Central Nervous System of K18-Human ACE2 Transgenic Mice.
    Olivarria GM; Cheng Y; Furman S; Pachow C; Hohsfield LA; Smith-Geater C; Miramontes R; Wu J; Burns MS; Tsourmas KI; Stocksdale J; Manlapaz C; Yong WH; Teijaro J; Edwards R; Green KN; Thompson LM; Lane TE
    J Virol; 2022 Feb; 96(4):e0196921. PubMed ID: 34935438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuropathological assessment of the olfactory bulb and tract in individuals with COVID-19.
    Lengacher NA; Tomlinson JJ; Jochum AK; Franz J; Hasan Ali O; Flatz L; Jochum W; Penninger J; ; Stadelmann C; Woulfe JM; Schlossmacher MG
    Acta Neuropathol Commun; 2024 May; 12(1):70. PubMed ID: 38698465
    [TBL] [Abstract][Full Text] [Related]  

  • 26. COVID-19 and Parkinson's disease: Defects in neurogenesis as the potential cause of olfactory system impairments and anosmia.
    Rethinavel HS; Ravichandran S; Radhakrishnan RK; Kandasamy M
    J Chem Neuroanat; 2021 Sep; 115():101965. PubMed ID: 33989761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sendai Virus Induces Persistent Olfactory Dysfunction in a Murine Model of PVOD via Effects on Apoptosis, Cell Proliferation, and Response to Odorants.
    Tian J; Pinto JM; Cui X; Zhang H; Li L; Liu Y; Wu C; Wei Y
    PLoS One; 2016; 11(7):e0159033. PubMed ID: 27428110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential convergence of olfactory dysfunction in Parkinson's disease and COVID-19: The role of neuroinflammation.
    Li H; Qian J; Wang Y; Wang J; Mi X; Qu L; Song N; Xie J
    Ageing Res Rev; 2024 Jun; 97():102288. PubMed ID: 38580172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SARS-CoV-2 infection exacerbates the cellular pathology of Parkinson's disease in human dopaminergic neurons and a mouse model.
    Lee B; Choi HN; Che YH; Ko M; Seong HM; Jo MG; Kim SH; Song C; Yoon S; Choi J; Kim JH; Kim M; Lee MY; Park SW; Kim HJ; Kim SJ; Moon DS; Lee S; Park JH; Yeo SG; Everson RG; Kim YJ; Hong KW; Roh IS; Lyoo KS; Kim YJ; Yun SP
    Cell Rep Med; 2024 May; 5(5):101570. PubMed ID: 38749422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Histochemical Evidence for Reduced Immune Response in Nasal Mucosa of Patients with COVID-19.
    Power Guerra N; Bierkämper M; Pablik J; Hummel T; Witt M
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Systematic Review of the Neuropathologic Findings of Post-Viral Olfactory Dysfunction: Implications and Novel Insight for the COVID-19 Pandemic.
    Lee JC; Nallani R; Cass L; Bhalla V; Chiu AG; Villwock JA
    Am J Rhinol Allergy; 2021 May; 35(3):323-333. PubMed ID: 32915650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amyloid-β deposition and olfactory dysfunction in an Alzheimer's disease model.
    Wu N; Rao X; Gao Y; Wang J; Xu F
    J Alzheimers Dis; 2013; 37(4):699-712. PubMed ID: 23948910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Olfactory Cleft Measurements and COVID-19-Related Anosmia.
    Altundag A; Yıldırım D; Tekcan Sanli DE; Cayonu M; Kandemirli SG; Sanli AN; Arici Duz O; Saatci O
    Otolaryngol Head Neck Surg; 2021 Jun; 164(6):1337-1344. PubMed ID: 33045908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age.
    Bilinska K; Jakubowska P; Von Bartheld CS; Butowt R
    ACS Chem Neurosci; 2020 Jun; 11(11):1555-1562. PubMed ID: 32379417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuroinvasion and Encephalitis Following Intranasal Inoculation of SARS-CoV-2 in K18-hACE2 Mice.
    Kumari P; Rothan HA; Natekar JP; Stone S; Pathak H; Strate PG; Arora K; Brinton MA; Kumar M
    Viruses; 2021 Jan; 13(1):. PubMed ID: 33477869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of nasal inflammation on the olfactory bulb.
    LaFever BJ; Imamura F
    J Neuroinflammation; 2022 Dec; 19(1):294. PubMed ID: 36494744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurological Insights of COVID-19 Pandemic.
    Das G; Mukherjee N; Ghosh S
    ACS Chem Neurosci; 2020 May; 11(9):1206-1209. PubMed ID: 32320211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The immune mechanism of the nasal epithelium in COVID-19-related olfactory dysfunction.
    Chen S; Wang S
    Front Immunol; 2023; 14():1045009. PubMed ID: 37529051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Update on Sphingosine-1-Phosphate and Lysophosphatidic Acid Receptor Transcripts in Rodent Olfactory Mucosa.
    Toebbe JT; Genter MB
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457160
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.