These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38834541)

  • 1. Bio-inspired multimodal learning with organic neuromorphic electronics for behavioral conditioning in robotics.
    Krauhausen I; Griggs S; McCulloch I; den Toonder JMJ; Gkoupidenis P; van de Burgt Y
    Nat Commun; 2024 Jun; 15(1):4765. PubMed ID: 38834541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic neuromorphic electronics for sensorimotor integration and learning in robotics.
    Krauhausen I; Koutsouras DA; Melianas A; Keene ST; Lieberth K; Ledanseur H; Sheelamanthula R; Giovannitti A; Torricelli F; Mcculloch I; Blom PWM; Salleo A; van de Burgt Y; Gkoupidenis P
    Sci Adv; 2021 Dec; 7(50):eabl5068. PubMed ID: 34890232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable Temperature-Responsive Multimodal Neuromorphic Electronic Skin with Spontaneous Synaptic Plasticity Recovery.
    Wang Y; Liu D; Zhang Y; Fan L; Ren Q; Ma S; Zhang M
    ACS Nano; 2022 May; 16(5):8283-8293. PubMed ID: 35451307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-sustained green neuromorphic interfaces.
    Fu T; Liu X; Fu S; Woodard T; Gao H; Lovley DR; Yao J
    Nat Commun; 2021 Jun; 12(1):3351. PubMed ID: 34099691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional materials for synaptic electronics and neuromorphic systems.
    Wang S; Zhang DW; Zhou P
    Sci Bull (Beijing); 2019 Aug; 64(15):1056-1066. PubMed ID: 36659765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin.
    Wang W; Jiang Y; Zhong D; Zhang Z; Choudhury S; Lai JC; Gong H; Niu S; Yan X; Zheng Y; Shih CC; Ning R; Lin Q; Li D; Kim YH; Kim J; Wang YX; Zhao C; Xu C; Ji X; Nishio Y; Lyu H; Tok JB; Bao Z
    Science; 2023 May; 380(6646):735-742. PubMed ID: 37200416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concealing Organic Neuromorphic Devices with Neuronal-Inspired Supported Lipid Bilayers.
    Ausilio C; Lubrano C; Rana D; Matrone GM; Bruno U; Santoro F
    Adv Sci (Weinh); 2024 Jul; 11(27):e2305860. PubMed ID: 38702931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-inspired multimodal hybrid neural network for robot place recognition.
    Yu F; Wu Y; Ma S; Xu M; Li H; Qu H; Song C; Wang T; Zhao R; Shi L
    Sci Robot; 2023 May; 8(78):eabm6996. PubMed ID: 37163608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromorphic computing hardware and neural architectures for robotics.
    Sandamirskaya Y; Kaboli M; Conradt J; Celikel T
    Sci Robot; 2022 Jun; 7(67):eabl8419. PubMed ID: 35767646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Flexible Artificial Sensory Nerve Enabled by Nanoparticle-Assembled Synaptic Devices for Neuromorphic Tactile Recognition.
    Jiang C; Liu J; Yang L; Gong J; Wei H; Xu W
    Adv Sci (Weinh); 2022 Aug; 9(24):e2106124. PubMed ID: 35686320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Firing feature-driven neural circuits with scalable memristive neurons for robotic obstacle avoidance.
    Yang Y; Zhu F; Zhang X; Chen P; Wang Y; Zhu J; Ding Y; Cheng L; Li C; Jiang H; Wang Z; Lin P; Shi T; Wang M; Liu Q; Xu N; Liu M
    Nat Commun; 2024 May; 15(1):4318. PubMed ID: 38773067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges.
    Tang J; Yuan F; Shen X; Wang Z; Rao M; He Y; Sun Y; Li X; Zhang W; Li Y; Gao B; Qian H; Bi G; Song S; Yang JJ; Wu H
    Adv Mater; 2019 Dec; 31(49):e1902761. PubMed ID: 31550405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-inspired grasp control in a robotic hand with massive sensorial input.
    Ascari L; Bertocchi U; Corradi P; Laschi C; Dario P
    Biol Cybern; 2009 Feb; 100(2):109-28. PubMed ID: 19066937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serendipitous Offline Learning in a Neuromorphic Robot.
    Stewart TC; Kleinhans A; Mundy A; Conradt J
    Front Neurorobot; 2016; 10():1. PubMed ID: 26913002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of associative learning in a neuromorphic inference network.
    Gandolfi D; Puglisi FM; Boiani GM; Pagnoni G; Friston KJ; D'Angelo E; Mapelli J
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35508120
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.