These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38834566)

  • 1. A finite element model for predicting impact-induced damage to a skin simulant.
    Imam SA; Hughes AC; Carré M; Driscoll H; Winwood K; Venkatraman P; Allen T
    Sci Rep; 2024 Jun; 14(1):12810. PubMed ID: 38834566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of brain simulant strains in head surrogate under impact loading.
    Singh A; Ganpule SG; Khan MK; Iqbal MA
    Biomech Model Mechanobiol; 2021 Dec; 20(6):2319-2334. PubMed ID: 34455505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modeling of human brain response to football helmet impacts.
    Darling T; Muthuswamy J; Rajan SD
    Comput Methods Biomech Biomed Engin; 2016 Oct; 19(13):1432-42. PubMed ID: 26867124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of orbital deformation using finite-element analysis.
    Al-Sukhun J; Lindqvist C; Kontio R
    J R Soc Interface; 2006 Apr; 3(7):255-62. PubMed ID: 16849235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
    Alexander SL; Weerasooriya T
    J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling.
    Chang CY; Rupp JD; Reed MP; Hughes RE; Schneider LW
    Stapp Car Crash J; 2009 Nov; 53():291-328. PubMed ID: 20058559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation of material behavior uncertainty in a nonlinear finite element model of reconstructive surgery.
    Lee T; Turin SY; Gosain AK; Bilionis I; Buganza Tepole A
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1857-1873. PubMed ID: 30073612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evaluation of new multi-material human soft tissue simulants for sports impact surrogates.
    Payne T; Mitchell S; Bibb R; Waters M
    J Mech Behav Biomed Mater; 2015 Jan; 41():336-56. PubMed ID: 25448686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Fluid Dynamics in Distributing Ankle Stresses in Anatomic and Injured States.
    Hamid KS; Scott AT; Nwachukwu BU; Danelson KA
    Foot Ankle Int; 2016 Dec; 37(12):1343-1349. PubMed ID: 27530984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Biomechanical Determinants of Concussion: Finite Element Simulations to Investigate Tissue-Level Predictors of Injury During Sporting Impacts to the Unprotected Head.
    Patton DA; McIntosh AS; Kleiven S
    J Appl Biomech; 2015 Aug; 31(4):264-8. PubMed ID: 25781376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element simulations of the head-brain responses to the top impacts of a construction helmet: Effects of the neck and body mass.
    Wu JZ; Pan CS; Wimer BM; Rosen CL
    Proc Inst Mech Eng H; 2017 Jan; 231(1):58-68. PubMed ID: 28097935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a finite element model of the tibia for short-duration high-force axial impact loading.
    Quenneville CE; Dunning CE
    Comput Methods Biomech Biomed Engin; 2011 Feb; 14(2):205-12. PubMed ID: 21337226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of tapered and external hexagon connections on bone stresses around tilted dental implants: three-dimensional finite element method with statistical analysis.
    de Faria Almeida DA; Pellizzer EP; Verri FR; Santiago JF; de Carvalho PS
    J Periodontol; 2014 Feb; 85(2):261-9. PubMed ID: 23688104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental and computational study of blunt carotid artery injury.
    Gayzik FS; Bostrom O; Ortenwall P; Duma SM; Stitzel JD
    Annu Proc Assoc Adv Automot Med; 2006; 50():13-32. PubMed ID: 16968627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite Element Analysis of Bone Stress for Miniscrew Implant Proximal to Root Under Occlusal Force and Implant Loading.
    Shan LH; Guo N; Zhou GJ; Qie H; Li CX; Lu L
    J Craniofac Surg; 2015 Oct; 26(7):2072-6. PubMed ID: 26207429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A finite element-based injury metric for pulmonary contusion: investigation of candidate metrics through correlation with computed tomography.
    Gayzik FS; Hoth JJ; Daly M; Meredith JW; Stitzel JD
    Stapp Car Crash J; 2007 Oct; 51():189-209. PubMed ID: 18278598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive model of brain tissue suitable for finite element analysis of surgical procedures.
    Miller K
    J Biomech; 1999 May; 32(5):531-7. PubMed ID: 10327007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion.
    Hambli R
    Med Biol Eng Comput; 2013 Feb; 51(1-2):219-31. PubMed ID: 23179412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.