BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 38834569)

  • 1. Control of a gene transfer agent cluster in Caulobacter crescentus by transcriptional activation and anti-termination.
    Tran NT; Le TBK
    Nat Commun; 2024 Jun; 15(1):4749. PubMed ID: 38834569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prophage-like gene transfer agents promote Caulobacter crescentus survival and DNA repair during stationary phase.
    Gozzi K; Tran NT; Modell JW; Le TBK; Laub MT
    PLoS Biol; 2022 Nov; 20(11):e3001790. PubMed ID: 36327213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. XRE transcription factors conserved in Caulobacter and φCbK modulate adhesin development and phage production.
    McLaughlin M; Fiebig A; Crosson S
    PLoS Genet; 2023 Nov; 19(11):e1011048. PubMed ID: 37972151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of the Cold Shock DEAD-Box RNA Helicase RhlE to the RNA Degradosome in Caulobacter crescentus.
    Aguirre AA; Vicente AM; Hardwick SW; Alvelos DM; Mazzon RR; Luisi BF; Marques MV
    J Bacteriol; 2017 Jul; 199(13):. PubMed ID: 28396352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. XRE Transcription Factors Conserved in
    McLaughlin M; Fiebig A; Crosson S
    bioRxiv; 2023 Aug; ():. PubMed ID: 37645952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transcription termination factor Rho is essential and autoregulated in Caulobacter crescentus.
    Italiani VC; Marques MV
    J Bacteriol; 2005 Jun; 187(12):4290-4. PubMed ID: 15937192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of integration host factor in the transcriptional activation of flagellar gene expression in Caulobacter crescentus.
    Muir RE; Gober JW
    J Bacteriol; 2005 Feb; 187(3):949-60. PubMed ID: 15659673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SucA-dependent uptake of sucrose across the outer membrane of Caulobacter crescentus.
    Modrak SK; Melin ME; Bowers LM
    J Microbiol; 2018 Sep; 56(9):648-655. PubMed ID: 30054816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide profiling of Hfq-bound RNAs reveals the iron-responsive small RNA RusT in
    Vogt LN; Panis G; Schäpers A; Peschek N; Huber M; Papenfort K; Viollier PH; Fröhlich KS
    mBio; 2024 Apr; 15(4):e0315323. PubMed ID: 38511926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the PhoB Regulon and Role of PhoU in the Phosphate Starvation Response of Caulobacter crescentus.
    Lubin EA; Henry JT; Fiebig A; Crosson S; Laub MT
    J Bacteriol; 2016 Jan; 198(1):187-200. PubMed ID: 26483520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Two Chemotaxis Clusters in Caulobacter crescentus Play Different Roles in Chemotaxis and Biofilm Regulation.
    Berne C; Brun YV
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31109992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NusG is an intrinsic transcription termination factor that stimulates motility and coordinates gene expression with NusA.
    Mandell ZF; Oshiro RT; Yakhnin AV; Vishwakarma R; Kashlev M; Kearns DB; Babitzke P
    Elife; 2021 Apr; 10():. PubMed ID: 33835023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus.
    Hu P; Brodie EL; Suzuki Y; McAdams HH; Andersen GL
    J Bacteriol; 2005 Dec; 187(24):8437-49. PubMed ID: 16321948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of transcriptional and translational control sequences on the expression of foreign genes in Caulobacter crescentus.
    Yap WH; Thanabalu T; Porter AG
    J Bacteriol; 1994 May; 176(9):2603-10. PubMed ID: 8169208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cis- and trans-acting elements required for regulation of flagellar gene transcription in the bacterium Caulobacter crescentus.
    Mullin DA; Mullin AH
    Cell Mol Biol Res; 1993; 39(4):361-9. PubMed ID: 8312972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus.
    Fernandez-Fernandez C; Gonzalez D; Collier J
    PLoS One; 2011; 6(10):e26028. PubMed ID: 22022497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus.
    Wu J; Newton A
    J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold Regulation of Genes Encoding Ion Transport Systems in the Oligotrophic Bacterium Caulobacter crescentus.
    de Araújo HL; Martins BP; Vicente AM; Lorenzetti APR; Koide T; Marques MV
    Microbiol Spectr; 2021 Sep; 9(1):e0071021. PubMed ID: 34479415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the unique mechanism of transcription activation by Caulobacter crescentus GcrA.
    Wu X; Haakonsen DL; Sanderlin AG; Liu YJ; Shen L; Zhuang N; Laub MT; Zhang Y
    Nucleic Acids Res; 2018 Apr; 46(6):3245-3256. PubMed ID: 29514271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of proline utilization by the Lrp-like regulator PutR in Caulobacter crescentus.
    Mouammine A; Eich K; Frandi A; Collier J
    Sci Rep; 2018 Oct; 8(1):14677. PubMed ID: 30279528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.