These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 38834586)

  • 1. Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration.
    Bixel MG; Sivaraj KK; Timmen M; Mohanakrishnan V; Aravamudhan A; Adams S; Koh BI; Jeong HW; Kruse K; Stange R; Adams RH
    Nat Commun; 2024 Jun; 15(1):4575. PubMed ID: 38834586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration.
    Burger MG; Grosso A; Briquez PS; Born GME; Lunger A; Schrenk F; Todorov A; Sacchi V; Hubbell JA; Schaefer DJ; Banfi A; Di Maggio N
    Acta Biomater; 2022 Sep; 149():111-125. PubMed ID: 35835287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair.
    Huang C; Ness VP; Yang X; Chen H; Luo J; Brown EB; Zhang X
    J Bone Miner Res; 2015 Jul; 30(7):1217-30. PubMed ID: 25640220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular endothelial growth factor-transfected adipose-derived stromal cells enhance bone regeneration and neovascularization from bone marrow stromal cells.
    Kang ML; Kim JE; Im GI
    J Tissue Eng Regen Med; 2017 Dec; 11(12):3337-3348. PubMed ID: 28198165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locally applied vascular endothelial growth factor A increases the osteogenic healing capacity of human adipose-derived stem cells by promoting osteogenic and endothelial differentiation.
    Behr B; Tang C; Germann G; Longaker MT; Quarto N
    Stem Cells; 2011 Feb; 29(2):286-96. PubMed ID: 21732486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation.
    Mayer H; Bertram H; Lindenmaier W; Korff T; Weber H; Weich H
    J Cell Biochem; 2005 Jul; 95(4):827-39. PubMed ID: 15838884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sema3A and HIF1α co-overexpressed iPSC-MSCs/HA scaffold facilitates the repair of calvarial defect in a mouse model.
    Li J; Wang T; Li C; Wang Z; Wang P; Zheng L
    J Cell Physiol; 2020 Oct; 235(10):6754-6766. PubMed ID: 32012286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fucoidan-induced osteogenic differentiation promotes angiogenesis by inducing vascular endothelial growth factor secretion and accelerates bone repair.
    Kim BS; Yang SS; You HK; Shin HI; Lee J
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1311-e1324. PubMed ID: 28714275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular hypoxia promotes osteogenic differentiation of mesenchymal stem cells and bone defect healing via STAT3 signaling.
    Yu X; Wan Q; Ye X; Cheng Y; Pathak JL; Li Z
    Cell Mol Biol Lett; 2019; 24():64. PubMed ID: 31827540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats.
    Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L
    Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblast-derived EGFL6 couples angiogenesis to osteogenesis during bone repair.
    Chen K; Liao S; Li Y; Jiang H; Liu Y; Wang C; Kuek V; Kenny J; Li B; Huang Q; Hong J; Huang Y; Chim SM; Tickner J; Pavlos NJ; Zhao J; Liu Q; Qin A; Xu J
    Theranostics; 2021; 11(20):9738-9751. PubMed ID: 34815781
    [No Abstract]   [Full Text] [Related]  

  • 12. The roles of vascular endothelial growth factor in bone repair and regeneration.
    Hu K; Olsen BR
    Bone; 2016 Oct; 91():30-8. PubMed ID: 27353702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Bone Morphogenetic Protein-2 on Neovascularization During Large Bone Defect Regeneration.
    Pearson HB; Mason DE; Kegelman CD; Zhao L; Dawahare JH; Kacena MA; Boerckel JD
    Tissue Eng Part A; 2019 Dec; 25(23-24):1623-1634. PubMed ID: 30973074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BMPER Enhances Bone Formation by Promoting the Osteogenesis-Angiogenesis Coupling Process in Mesenchymal Stem Cells.
    Xiao F; Wang C; Wang C; Gao Y; Zhang X; Chen X
    Cell Physiol Biochem; 2018; 45(5):1927-1939. PubMed ID: 29518774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration.
    Dirckx N; Van Hul M; Maes C
    Birth Defects Res C Embryo Today; 2013 Sep; 99(3):170-91. PubMed ID: 24078495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motivating role of type H vessels in bone regeneration.
    Zhang J; Pan J; Jing W
    Cell Prolif; 2020 Sep; 53(9):e12874. PubMed ID: 33448495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors.
    Lin CY; Chang YH; Kao CY; Lu CH; Sung LY; Yen TC; Lin KJ; Hu YC
    Biomaterials; 2012 May; 33(14):3682-92. PubMed ID: 22361095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobilizing Endogenous Progenitor Cells Using pSDF1α-Activated Scaffolds Accelerates Angiogenesis and Bone Repair in Critical-Sized Bone Defects.
    Raftery RM; Gonzalez Vazquez AG; Walsh DP; Chen G; Laiva AL; Keogh MB; O'Brien FJ
    Adv Healthc Mater; 2024 Sep; 13(23):e2401031. PubMed ID: 38850118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditioned media from mesenchymal stromal cells and periodontal ligament fibroblasts under cyclic stretch stimulation promote bone healing in mouse calvarial defects.
    Ogisu K; Fujio M; Tsuchiya S; Tsuboi M; Qi C; Toyama N; Kamio H; Hibi H
    Cytotherapy; 2020 Oct; 22(10):543-551. PubMed ID: 32798177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.