These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38835075)

  • 1. Optimizing clinico-genomic disease prediction across ancestries: a machine learning strategy with Pareto improvement.
    Gao Y; Cui Y
    Genome Med; 2024 Jun; 16(1):76. PubMed ID: 38835075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic prediction using machine learning: a comparison of the performance of regularized regression, ensemble, instance-based and deep learning methods on synthetic and empirical data.
    Lourenço VM; Ogutu JO; Rodrigues RAP; Posekany A; Piepho HP
    BMC Genomics; 2024 Feb; 25(1):152. PubMed ID: 38326768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Strategies for Improved Phenotype Prediction in Underrepresented Populations.
    Bonet D; Levin M; Montserrat DM; Ioannidis AG
    Pac Symp Biocomput; 2024; 29():404-418. PubMed ID: 38160295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants.
    Wang K; Abid MA; Rasheed A; Crossa J; Hearne S; Li H
    Mol Plant; 2023 Jan; 16(1):279-293. PubMed ID: 36366781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Strategies for Improved Phenotype Prediction in Underrepresented Populations.
    Bonet D; Levin M; Montserrat DM; Ioannidis AG
    bioRxiv; 2023 Oct; ():. PubMed ID: 37904983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using machine learning to realize genetic site screening and genomic prediction of productive traits in pigs.
    Xiang T; Li T; Li J; Li X; Wang J
    FASEB J; 2023 Jun; 37(6):e22961. PubMed ID: 37178007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic prediction with machine learning in sugarcane, a complex highly polyploid clonally propagated crop with substantial non-additive variation for key traits.
    Chen C; Powell O; Dinglasan E; Ross EM; Yadav S; Wei X; Atkin F; Deomano E; Hayes BJ
    Plant Genome; 2023 Dec; 16(4):e20390. PubMed ID: 37728221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-population genomic prediction using a multi-task Bayesian learning model.
    Chen L; Li C; Miller S; Schenkel F
    BMC Genet; 2014 May; 15():53. PubMed ID: 24884927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. parSMURF, a high-performance computing tool for the genome-wide detection of pathogenic variants.
    Petrini A; Mesiti M; Schubach M; Frasca M; Danis D; Re M; Grossi G; Cappelletti L; Castrignanò T; Robinson PN; Valentini G
    Gigascience; 2020 May; 9(5):. PubMed ID: 32444882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equitable machine learning counteracts ancestral bias in precision medicine, improving outcomes for all.
    Smith LA; Cahill JA; Graim K
    Res Sq; 2023 Jul; ():. PubMed ID: 37546907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking machine learning models for late-onset alzheimer's disease prediction from genomic data.
    De Velasco Oriol J; Vallejo EE; Estrada K; Taméz Peña JG; Disease Neuroimaging Initiative TA
    BMC Bioinformatics; 2019 Dec; 20(1):709. PubMed ID: 31842725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing prediction accuracy of coronary artery disease through machine learning-driven genomic variant selection.
    Alireza Z; Maleeha M; Kaikkonen M; Fortino V
    J Transl Med; 2024 Apr; 22(1):356. PubMed ID: 38627847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomics and Artificial Intelligence: Prostate Cancer.
    Wong EY; Chu TN; Ladi-Seyedian SS
    Urol Clin North Am; 2024 Feb; 51(1):27-33. PubMed ID: 37945100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prior Clinico-Radiological Features Informed Multi-Modal MR Images Convolution Neural Network: A novel deep learning framework for prediction of lymphovascular invasion in breast cancer.
    Zheng H; Jian L; Li L; Liu W; Chen W
    Cancer Med; 2024 Feb; 13(3):e6932. PubMed ID: 38230837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison of Three Machine Learning Methods for Multivariate Genomic Prediction Using the Sparse Kernels Method (SKM) Library.
    Montesinos-López OA; Montesinos-López A; Cano-Paez B; Hernández-Suárez CM; Santana-Mancilla PC; Crossa J
    Genes (Basel); 2022 Aug; 13(8):. PubMed ID: 36011405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive investigation of statistical and machine learning approaches for predicting complex human diseases on genomic variants.
    Wang C; Zhang J; Veldsman WP; Zhou X; Zhang L
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36585786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning-based prediction model using clinico-pathologic factors for papillary thyroid carcinoma recurrence.
    Park YM; Lee BJ
    Sci Rep; 2021 Mar; 11(1):4948. PubMed ID: 33654166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving genetic risk prediction across diverse population by disentangling ancestry representations.
    Gyawali PK; Le Guen Y; Liu X; Belloy ME; Tang H; Zou J; He Z
    Commun Biol; 2023 Sep; 6(1):964. PubMed ID: 37736834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving prediction for medical institution with limited patient data: Leveraging hospital-specific data based on multicenter collaborative research network.
    Li J; Tian Y; Li R; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2021 Mar; 113():102024. PubMed ID: 33685587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.