These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 38835438)

  • 1. GC-rich repeat expansions: associated disorders and mechanisms.
    Schröder C; Horsthemke B; Depienne C
    Med Genet; 2021 Dec; 33(4):325-335. PubMed ID: 38835438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of repeat expansions in neurological disorders: Methodologies, tools, and strategies.
    Leitão E; Schröder C; Depienne C
    Rev Neurol (Paris); 2024 May; 180(5):383-392. PubMed ID: 38594146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide sequencing as a first-tier screening test for short tandem repeat expansions.
    Rajan-Babu IS; Peng JJ; Chiu R; ; ; Li C; Mohajeri A; Dolzhenko E; Eberle MA; Birol I; Friedman JM
    Genome Med; 2021 Aug; 13(1):126. PubMed ID: 34372915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of long repeat expansions from PCR-free whole-genome sequence data.
    Dolzhenko E; van Vugt JJFA; Shaw RJ; Bekritsky MA; van Blitterswijk M; Narzisi G; Ajay SS; Rajan V; Lajoie BR; Johnson NH; Kingsbury Z; Humphray SJ; Schellevis RD; Brands WJ; Baker M; Rademakers R; Kooyman M; Tazelaar GHP; van Es MA; McLaughlin R; Sproviero W; Shatunov A; Jones A; Al Khleifat A; Pittman A; Morgan S; Hardiman O; Al-Chalabi A; Shaw C; Smith B; Neo EJ; Morrison K; Shaw PJ; Reeves C; Winterkorn L; Wexler NS; ; Housman DE; Ng CW; Li AL; Taft RJ; van den Berg LH; Bentley DR; Veldink JH; Eberle MA
    Genome Res; 2017 Nov; 27(11):1895-1903. PubMed ID: 28887402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ExpansionHunter Denovo: a computational method for locating known and novel repeat expansions in short-read sequencing data.
    Dolzhenko E; Bennett MF; Richmond PA; Trost B; Chen S; van Vugt JJFA; Nguyen C; Narzisi G; Gainullin VG; Gross AM; Lajoie BR; Taft RJ; Wasserman WW; Scherer SW; Veldink JH; Bentley DR; Yuen RKC; Bahlo M; Eberle MA
    Genome Biol; 2020 Apr; 21(1):102. PubMed ID: 32345345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Father-to-offspring transmission of extremely long NOTCH2NLC repeat expansions with contractions: genetic and epigenetic profiling with long-read sequencing.
    Fukuda H; Yamaguchi D; Nyquist K; Yabuki Y; Miyatake S; Uchiyama Y; Hamanaka K; Saida K; Koshimizu E; Tsuchida N; Fujita A; Mitsuhashi S; Ohbo K; Satake Y; Sone J; Doi H; Morihara K; Okamoto T; Takahashi Y; Wenger AM; Shioda N; Tanaka F; Matsumoto N; Mizuguchi T
    Clin Epigenetics; 2021 Nov; 13(1):204. PubMed ID: 34774111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the detection of repeat expansions with short-read next-generation sequencing.
    Bahlo M; Bennett MF; Degorski P; Tankard RM; Delatycki MB; Lockhart PJ
    F1000Res; 2018; 7():. PubMed ID: 29946432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeat-associated non-AUG translation induces cytoplasmic aggregation of CAG repeat-containing RNAs.
    Das MR; Chang Y; Anderson R; Saunders RA; Zhang N; Tomberlin CP; Vale RD; Jain A
    Proc Natl Acad Sci U S A; 2023 Jan; 120(3):e2215071120. PubMed ID: 36623192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular pathogenesis of repeat expansion diseases.
    Fujino Y; Nagai Y
    Biochem Soc Trans; 2022 Feb; 50(1):119-134. PubMed ID: 34940797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeat-associated non-AUG translation and its impact in neurodegenerative disease.
    Kearse MG; Todd PK
    Neurotherapeutics; 2014 Oct; 11(4):721-31. PubMed ID: 25005000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study.
    Ibañez K; Polke J; Hagelstrom RT; Dolzhenko E; Pasko D; Thomas ERA; Daugherty LC; Kasperaviciute D; Smith KR; ; Deans ZC; Hill S; Fowler T; Scott RH; Hardy J; Chinnery PF; Houlden H; Rendon A; Caulfield MJ; Eberle MA; Taft RJ; Tucci A;
    Lancet Neurol; 2022 Mar; 21(3):234-245. PubMed ID: 35182509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast and reliable detection of repeat expansions in spinocerebellar ataxia using exomes.
    Méreaux JL; Davoine CS; Coutelier M; Guillot-Noël L; Castrioto A; Charles P; Coarelli G; Ewenczyk C; Klebe S; Heinzmann A; Méneret A; Fauret-Amsellem AL; de Sainte Agathe JM; Brice A; Durr A
    J Med Genet; 2023 Jul; 60(7):717-721. PubMed ID: 36599645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics.
    Chintalaphani SR; Pineda SS; Deveson IW; Kumar KR
    Acta Neuropathol Commun; 2021 May; 9(1):98. PubMed ID: 34034831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting Expansions of Tandem Repeats in Cohorts Sequenced with Short-Read Sequencing Data.
    Tankard RM; Bennett MF; Degorski P; Delatycki MB; Lockhart PJ; Bahlo M
    Am J Hum Genet; 2018 Dec; 103(6):858-873. PubMed ID: 30503517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA Helicases in Microsatellite Repeat Expansion Disorders and Neurodegeneration.
    Castelli LM; Benson BC; Huang WP; Lin YH; Hautbergue GM
    Front Genet; 2022; 13():886563. PubMed ID: 35646086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-read sequencing across the C9orf72 'GGGGCC' repeat expansion: implications for clinical use and genetic discovery efforts in human disease.
    Ebbert MTW; Farrugia SL; Sens JP; Jansen-West K; Gendron TF; Prudencio M; McLaughlin IJ; Bowman B; Seetin M; DeJesus-Hernandez M; Jackson J; Brown PH; Dickson DW; van Blitterswijk M; Rademakers R; Petrucelli L; Fryer JD
    Mol Neurodegener; 2018 Aug; 13(1):46. PubMed ID: 30126445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long read sequencing on its way to the routine diagnostics of genetic diseases.
    Olivucci G; Iovino E; Innella G; Turchetti D; Pippucci T; Magini P
    Front Genet; 2024; 15():1374860. PubMed ID: 38510277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization PCR for Detection CTG/CCTG-Repeat Expansions in the Diagnosis of Myotonic Dystrophies.
    Meng YX; Shen HR; Zhao Z; Bing Q; Li N; Hu J
    Ann Clin Lab Sci; 2015; 45(5):502-7. PubMed ID: 26586700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. REViewer: haplotype-resolved visualization of read alignments in and around tandem repeats.
    Dolzhenko E; Weisburd B; Ibañez K; Rajan-Babu IS; Anyansi C; Bennett MF; Billingsley K; Carroll A; Clamons S; Danzi MC; Deshpande V; Ding J; Fazal S; Halman A; Jadhav B; Qiu Y; Richmond PA; Saunders CT; Scheffler K; van Vugt JJFA; Zwamborn RRAJ; ; Chong SS; Friedman JM; Tucci A; Rehm HL; Eberle MA
    Genome Med; 2022 Aug; 14(1):84. PubMed ID: 35948990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CAG repeat expansions create splicing acceptor sites and produce aberrant repeat-containing RNAs.
    Anderson R; Das MR; Chang Y; Farenhem K; Schmitz CO; Jain A
    Mol Cell; 2024 Feb; 84(4):702-714.e10. PubMed ID: 38295802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.