These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38835976)

  • 1. Effects of IMU sensor-to-segment calibration on clinical 3D elbow joint angles estimation.
    Bonfiglio A; Tacconi D; Bongers RM; Farella E
    Front Bioeng Biotechnol; 2024; 12():1385750. PubMed ID: 38835976
    [No Abstract]   [Full Text] [Related]  

  • 2. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements.
    Teufl W; Miezal M; Taetz B; Fröhlich M; Bleser G
    PLoS One; 2019; 14(2):e0213064. PubMed ID: 30817787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent validity and within-session reliability of gait kinematics measured using an inertial motion capture system with repeated calibration.
    Berner K; Cockcroft J; Morris LD; Louw Q
    J Bodyw Mov Ther; 2020 Oct; 24(4):251-260. PubMed ID: 33218520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial Measurement Unit Sensor-to-Segment Calibration Comparison for Sport-Specific Motion Analysis.
    Ekdahl M; Loewen A; Erdman A; Sahin S; Ulman S
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement-a proof of concept.
    Zabat M; Ababou A; Ababou N; Dumas R
    Med Biol Eng Comput; 2019 Nov; 57(11):2449-2460. PubMed ID: 31471784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of Novel Relative Orientation and Inertial Sensor-to-Segment Alignment Algorithms for Estimating 3D Hip Joint Angles.
    Adamowicz L; Gurchiek RD; Ferri J; Ursiny AT; Fiorentino N; McGinnis RS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upper Limb Kinematics Using Inertial and Magnetic Sensors: Comparison of Sensor-to-Segment Calibrations.
    Bouvier B; Duprey S; Claudon L; Dumas R; Savescu A
    Sensors (Basel); 2015 Jul; 15(8):18813-33. PubMed ID: 26263993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lower Limb Kinematics Using Inertial Sensors during Locomotion: Accuracy and Reproducibility of Joint Angle Calculations with Different Sensor-to-Segment Calibrations.
    Lebleu J; Gosseye T; Detrembleur C; Mahaudens P; Cartiaux O; Penta M
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of 3D Knee Joint Angles during Cycling Using Inertial Sensors: Accuracy of a Novel Sensor-to-Segment Calibration Procedure Based on Pedaling Motion.
    Cordillet S; Bideau N; Bideau B; Nicolas G
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31151200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alignment-Free, Self-Calibrating Elbow Angles Measurement Using Inertial Sensors.
    Muller P; Begin MA; Schauer T; Seel T
    IEEE J Biomed Health Inform; 2017 Mar; 21(2):312-319. PubMed ID: 28113331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Calibrating Magnetometer-Free Inertial Motion Tracking of 2-DoF Joints.
    Laidig D; Weygers I; Seel T
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles: A Systematic Review.
    Fang Z; Woodford S; Senanayake D; Ackland D
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial Sensor-to-Segment Calibration for Accurate 3D Joint Angle Calculation for Use in OpenSim.
    Di Raimondo G; Vanwanseele B; van der Have A; Emmerzaal J; Willems M; Killen BA; Jonkers I
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Auto-Calibrating Knee Flexion-Extension Axis Estimator Using Principal Component Analysis with Inertial Sensors.
    McGrath T; Fineman R; Stirling L
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel functional calibration method for real-time elbow joint angles estimation with magnetic-inertial sensors.
    Ligorio G; Zanotto D; Sabatini AM; Agrawal SK
    J Biomech; 2017 Mar; 54():106-110. PubMed ID: 28236444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy and repeatability of single-pose calibration of inertial measurement units for whole-body motion analysis.
    Robert-Lachaine X; Mecheri H; Larue C; Plamondon A
    Gait Posture; 2017 May; 54():80-86. PubMed ID: 28279850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional calibration does not improve the concurrent validity of magneto-inertial wearable sensor-based thorax and lumbar angle measurements when compared with retro-reflective motion capture.
    Cottam DS; Campbell AC; Davey PC; Kent P; Elliott BC; Alderson JA
    Med Biol Eng Comput; 2021 Nov; 59(11-12):2253-2262. PubMed ID: 34529184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vitro validation of inertial-sensor-to-bone alignment.
    Weygers I; Kok M; Seel T; Shah D; Taylan O; Scheys L; Hallez H; Claeys K
    J Biomech; 2021 Nov; 128():110781. PubMed ID: 34628197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On Inertial Body Tracking in the Presence of Model Calibration Errors.
    Miezal M; Taetz B; Bleser G
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of an IMU Suit for Military-Based Tasks.
    Mavor MP; Ross GB; Clouthier AL; Karakolis T; Graham RB
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.