These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 38836)

  • 21. Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 1. Effect of pH and imposed membrane potential on efflux, exchange, and counterflow.
    Garcia ML; Viitanen P; Foster DL; Kaback HR
    Biochemistry; 1983 May; 22(10):2524-31. PubMed ID: 6344920
    [No Abstract]   [Full Text] [Related]  

  • 22. Lactose transport system of Streptococcus thermophilus. Functional reconstitution of the protein and characterization of the kinetic mechanism of transport.
    Foucaud C; Poolman B
    J Biol Chem; 1992 Nov; 267(31):22087-94. PubMed ID: 1429561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of rates of H+, Na+ and K+ transport across phospholipid vesicular membrane by the combined action of carbonyl cyanide m-chlorophenylhydrazone and valinomycin: temperature-jump studies.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1995 May; 1235(2):323-35. PubMed ID: 7756342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the proton electrochemical gradient on maleimide inactivation of active transport in Escherichia coli membrane vesicles.
    Cohn DE; Kaczorowski GJ; Kaback HR
    Biochemistry; 1981 May; 20(11):3308-13. PubMed ID: 7018574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoinactivation of the beta-galactoside transport system in Escherichia coli membrane vesicles with an impermeant azidophenylgalactoside.
    Rudnick G; Kaback HR
    J Biol Chem; 1975 Sep; 250(17):6847-51. PubMed ID: 1099095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Valinomycin inhibited methane synthesis in Methanobacterium thermoautotrophicum.
    Sauer FD; Mahadevan S; Erfle JD
    Biochem Biophys Res Commun; 1980 Jul; 95(2):715-21. PubMed ID: 7417284
    [No Abstract]   [Full Text] [Related]  

  • 27. Influence of membrane potential on the insertion and transport of proteins in bacterial membranes.
    Landick RC; Daniels CJ; Oxender DL
    Methods Enzymol; 1983; 97():146-53. PubMed ID: 6361471
    [No Abstract]   [Full Text] [Related]  

  • 28. Energetics and mechanisms of lactose translocation in isolated membrane vesicles of Escherichia coli.
    Kaczorowski GJ; Robertson DE; Garcia ML; Padan E; Patel L; LeBlanc G; Kaback HR
    Ann N Y Acad Sci; 1980; 358():307-21. PubMed ID: 7011148
    [No Abstract]   [Full Text] [Related]  

  • 29. Equilibrium between two forms of the lac carrier protein in energized and nonenergized membrane vesicles from Escherichia coli.
    Rudnick G; Schildiner S; Kaback HR
    Biochemistry; 1976 Nov; 15(23):5126-31. PubMed ID: 791364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel type of coupling between proline and galactoside transport in Escherichia coli.
    Flagg JL; Wilson TH
    Membr Biochem; 1978; 1(1-2):61-72. PubMed ID: 388152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of ionophores on phosphate and arsenate transport in Micrococcus lysodeikticus.
    Friedberg I
    FEBS Lett; 1977 Sep; 81(2):264-6. PubMed ID: 21813
    [No Abstract]   [Full Text] [Related]  

  • 32. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles.
    Lombardi FJ; Reeves JP; Short SA; Kaback HR
    Ann N Y Acad Sci; 1974 Feb; 227():312-27. PubMed ID: 4363926
    [No Abstract]   [Full Text] [Related]  

  • 33. Apparently unidirectional polyamine transport by proton motive force in polyamine-deficient Escherichia coli.
    Kashiwagi K; Kobayashi H; Igarashi K
    J Bacteriol; 1986 Mar; 165(3):972-7. PubMed ID: 3005244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conversion of Escherichia coli cell-produced metabolic energy into electric form.
    Griniuviene B; Chmieliauskaite V; Melvydas V; Dzheja P; Grinius L
    J Bioenerg; 1975 Mar; 7(1):17-38. PubMed ID: 240812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sodium-calcium exchange activity generates a current in cardiac membrane vesicles.
    Reeves JP; Sutko JL
    Science; 1980 Jun; 208(4451):1461-4. PubMed ID: 7384788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile-mediated proton uptake in liposomes. Kinetics of proton uptake compensated by valinomycin-induced K+-efflux.
    Yamaguchi A; Anraku Y
    Biochim Biophys Acta; 1978 Jan; 501(1):136-49. PubMed ID: 23155
    [No Abstract]   [Full Text] [Related]  

  • 37. A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus.
    Tokuda H; Unemoto T
    Biochem Biophys Res Commun; 1981 Sep; 102(1):265-71. PubMed ID: 7306152
    [No Abstract]   [Full Text] [Related]  

  • 38. Glutamate excretion in Escherichia coli: dependency on the relA and spoT genotype.
    Burkovski A; Weil B; Krämer R
    Arch Microbiol; 1995 Jul; 164(1):24-8. PubMed ID: 7646316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH-dependent changes in proton:substrate stoichiometries during active transport in Escherichia coli membrane vesicles.
    Ramos S; Kaback HR
    Biochemistry; 1977 Sep; 16(19):4270-5. PubMed ID: 20136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lactose transport in Escherichia coli: effect of transmembrane potential difference on apparent substrate affinity.
    Wright JK; Overath P
    Biochem Soc Trans; 1980 Jun; 8(3):279-81. PubMed ID: 6995200
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.