These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 38836233)
1. Unraveling the nexus of NAD+ metabolism and diabetic kidney disease: insights from murine models and human data. Yang S; Gong W; Wang Y; Hao C; Guan Y Front Endocrinol (Lausanne); 2024; 15():1384953. PubMed ID: 38836233 [TBL] [Abstract][Full Text] [Related]
2. Kynurenine 3-monooxygenase limits de novo NAD Zhai Y; Chavez JA; D'Aquino KE; Meng R; Nawrocki AR; Pocai A; Wang L; Ma LJ Am J Physiol Cell Physiol; 2024 May; 326(5):C1423-C1436. PubMed ID: 38497113 [TBL] [Abstract][Full Text] [Related]
3. Aberrant NAD synthetic flux in podocytes under diabetic conditions and effects of indoleamine 2,3-dioxygenase on promoting de novo NAD synthesis. Zhang Y; Zhao X; Li C; Yang Y; Li L; Chen Y; Shi Q; Li Z; Wu Y; Zhang L; Li R; Si M; Liang X; Chen Y Biochem Biophys Res Commun; 2023 Feb; 643():61-68. PubMed ID: 36586160 [TBL] [Abstract][Full Text] [Related]
12. Urinary Renin in Patients and Mice With Diabetic Kidney Disease. Tang J; Wysocki J; Ye M; Vallés PG; Rein J; Shirazi M; Bader M; Gomez RA; Sequeira-Lopez MS; Afkarian M; Batlle D Hypertension; 2019 Jul; 74(1):83-94. PubMed ID: 31079532 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of core fucosylation limits progression of diabetic kidney disease. Fang M; Kang L; Wang X; Guo X; Wang W; Qin B; Du X; Tang Q; Lin H Biochem Biophys Res Commun; 2019 Dec; 520(3):612-618. PubMed ID: 31623829 [TBL] [Abstract][Full Text] [Related]
14. Complement Cascade Proteins Correlate with Fibrosis and Inflammation in Early-Stage Type 1 Diabetic Kidney Disease in the Ins2Akita Mouse Model. Tserga A; Saulnier-Blache JS; Palamaris K; Pouloudi D; Gakiopoulou H; Zoidakis J; Schanstra JP; Vlahou A; Makridakis M Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338666 [TBL] [Abstract][Full Text] [Related]
15. Decreased secretion and profibrotic activity of tubular exosomes in diabetic kidney disease. Wen J; Ma Z; Livingston MJ; Zhang W; Yuan Y; Guo C; Liu Y; Fu P; Dong Z Am J Physiol Renal Physiol; 2020 Oct; 319(4):F664-F673. PubMed ID: 32715764 [TBL] [Abstract][Full Text] [Related]
16. p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease. Ma Z; Li L; Livingston MJ; Zhang D; Mi Q; Zhang M; Ding HF; Huo Y; Mei C; Dong Z J Clin Invest; 2020 Sep; 130(9):5011-5026. PubMed ID: 32804155 [TBL] [Abstract][Full Text] [Related]
17. Serum amyloid A and inflammation in diabetic kidney disease and podocytes. Anderberg RJ; Meek RL; Hudkins KL; Cooney SK; Alpers CE; Leboeuf RC; Tuttle KR Lab Invest; 2015 Mar; 95(3):250-62. PubMed ID: 25531567 [TBL] [Abstract][Full Text] [Related]
19. Dysregulated expression but redundant function of the long non-coding RNA HOTAIR in diabetic kidney disease. Majumder S; Hadden MJ; Thieme K; Batchu SN; Niveditha D; Chowdhury S; Yerra VG; Advani SL; Bowskill BB; Liu Y; Vakili H; Alghamdi TA; White KE; Geldenhuys L; Siddiqi FS; Advani A Diabetologia; 2019 Nov; 62(11):2129-2142. PubMed ID: 31399844 [TBL] [Abstract][Full Text] [Related]
20. Impaired Nicotinamide Adenine Dinucleotide Biosynthesis in the Kidney of Chronic Kidney Disease. Liu X; Luo D; Huang S; Liu S; Zhang B; Wang F; Lu J; Chen J; Li S Front Physiol; 2021; 12():723690. PubMed ID: 34603081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]