These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38836450)

  • 1. Using a pruned basis and a sparse collocation grid with more points than basis functions to do efficient and accurate MCTDH calculations with general potential energy surfaces.
    Wodraszka R; Carrington T
    J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38836450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pruned collocation-based multiconfiguration time-dependent Hartree approach using a Smolyak grid for solving the Schrödinger equation with a general potential energy surface.
    Wodraszka R; Carrington T
    J Chem Phys; 2019 Apr; 150(15):154108. PubMed ID: 31005102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rectangular collocation multi-configuration time-dependent Hartree (MCTDH) approach with time-independent points for calculations on general potential energy surfaces.
    Wodraszka R; Carrington T
    J Chem Phys; 2021 Mar; 154(11):114107. PubMed ID: 33752363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using a pruned, nondirect product basis in conjunction with the multi-configuration time-dependent Hartree (MCTDH) method.
    Wodraszka R; Carrington T
    J Chem Phys; 2016 Jul; 145(4):044110. PubMed ID: 27475351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A collocation-based multi-configuration time-dependent Hartree method using mode combination and improved relaxation.
    Wodraszka R; Carrington T
    J Chem Phys; 2020 Apr; 152(16):164117. PubMed ID: 32357767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new collocation-based multi-configuration time-dependent Hartree (MCTDH) approach for solving the Schrödinger equation with a general potential energy surface.
    Wodraszka R; Carrington T
    J Chem Phys; 2018 Jan; 148(4):044115. PubMed ID: 29390829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematically expanding nondirect product bases within the pruned multi-configuration time-dependent Hartree (MCTDH) method: A comparison with multi-layer MCTDH.
    Wodraszka R; Carrington T
    J Chem Phys; 2017 May; 146(19):194105. PubMed ID: 28527461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using collocation and a hierarchical basis to solve the vibrational Schrödinger equation.
    Zak EJ; Carrington T
    J Chem Phys; 2019 May; 150(20):204108. PubMed ID: 31153182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computing vibrational spectra using a new collocation method with a pruned basis and more points than basis functions: Avoiding quadrature.
    Simmons J; Carrington T
    J Chem Phys; 2023 Apr; 158(14):144115. PubMed ID: 37061500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using collocation to study the vibrational dynamics of molecules.
    Carrington T
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119158. PubMed ID: 33218875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computing vibrational energy levels of CH
    Avila G; Carrington T
    J Chem Phys; 2017 Oct; 147(14):144102. PubMed ID: 29031264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing the cost of using collocation to compute vibrational energy levels: Results for CH
    Avila G; Carrington T
    J Chem Phys; 2017 Aug; 147(6):064103. PubMed ID: 28810786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-dimensional Smolyak collocation method in curvilinear coordinates for computing vibrational spectra.
    Avila G; Carrington T
    J Chem Phys; 2015 Dec; 143(21):214108. PubMed ID: 26646870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces.
    Manthe U
    J Chem Phys; 2008 Apr; 128(16):164116. PubMed ID: 18447430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solving the Schroedinger equation using Smolyak interpolants.
    Avila G; Carrington T
    J Chem Phys; 2013 Oct; 139(13):134114. PubMed ID: 24116559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The state averaged multiconfigurational time-dependent Hartree approach: vibrational state and reaction rate calculations.
    Manthe U
    J Chem Phys; 2008 Feb; 128(6):064108. PubMed ID: 18282029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Collocation to Solve the Schrödinger Equation.
    Manzhos S; Ihara M; Carrington T
    J Chem Theory Comput; 2023 Mar; 19(6):1641-1656. PubMed ID: 36974479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time evolution of ML-MCTDH wavefunctions. II. Application of the projector splitting integrator.
    Lindoy LP; Kloss B; Reichman DR
    J Chem Phys; 2021 Nov; 155(17):174109. PubMed ID: 34742222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerically exact correlation discrete variable representation for multi-configurational time-dependent Hartree calculations.
    Ellerbrock R; Hoppe H; Manthe U
    J Chem Phys; 2023 Jun; 158(24):. PubMed ID: 37347129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures.
    Avila G; Carrington T
    J Chem Phys; 2012 Nov; 137(17):174108. PubMed ID: 23145718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.