BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38836463)

  • 1. Czech Footprints in the Bioenergetics Research.
    Drahota Z; Houštěk J; Pecinová A
    Physiol Res; 2024 May; ():. PubMed ID: 38836463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-ion theory of energy coupling in ATP synthesis rectifies a fundamental flaw in the governing equations of the chemiosmotic theory.
    Nath S
    Biophys Chem; 2017 Nov; 230():45-52. PubMed ID: 28882384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overview of Mitochondrial Bioenergetics.
    Madeira VMC
    Methods Mol Biol; 2018; 1782():1-6. PubMed ID: 29850991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modern theory of energy coupling and ATP synthesis. Violation of Gauss's law by the chemiosmotic theory and validation of the two-ion theory.
    Nath S
    Biophys Chem; 2019 Dec; 255():106271. PubMed ID: 31670160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The photosensitiser azure A disrupts mitochondrial bioenergetics through intrinsic and photodynamic effects.
    de Souza BTL; Klosowski EM; Mito MS; Constantin RP; Mantovanelli GC; Mewes JM; Bizerra PFV; da Silva FSI; Menezes PVMDC; Gilglioni EH; Utsunomiya KS; Marchiosi R; Dos Santos WD; Ferrarese-Filho O; Caetano W; de Souza Pereira PC; Gonçalves RS; Constantin J; Ishii-Iwamoto EL; Constantin RP
    Toxicology; 2021 May; 455():152766. PubMed ID: 33775737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative phosphorylation revisited.
    Nath S; Villadsen J
    Biotechnol Bioeng; 2015 Mar; 112(3):429-37. PubMed ID: 25384602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of Mitochondrial Dysfunction in Alzheimer's Disease.
    Cadonic C; Sabbir MG; Albensi BC
    Mol Neurobiol; 2016 Nov; 53(9):6078-6090. PubMed ID: 26537901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercomplex supercomplexes: Raison d'etre and functional significance of supramolecular organization in oxidative phosphorylation.
    Nath S
    Biomol Concepts; 2022 May; 13(1):272-288. PubMed ID: 35617665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial degradation and energy metabolism.
    Melser S; Lavie J; Bénard G
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt B):2812-21. PubMed ID: 25979837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioenergetic and volume regulatory effects of mitoKATP channel modulators protect against hypoxia-reoxygenation-induced mitochondrial dysfunction.
    Onukwufor JO; Stevens D; Kamunde C
    J Exp Biol; 2016 Sep; 219(Pt 17):2743-51. PubMed ID: 27358470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention.
    Yang M; Chadwick AE; Dart C; Kamishima T; Quayle JM
    PLoS One; 2017; 12(5):e0177951. PubMed ID: 28542339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular-level understanding of biological energy coupling and transduction: Response to "Chemiosmotic misunderstandings".
    Nath S
    Biophys Chem; 2021 Jan; 268():106496. PubMed ID: 33160142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling mechanisms in ATP synthesis: Rejoinder to "Response to molecular-level understanding of biological energy coupling and transduction".
    Nath S
    Biophys Chem; 2021 May; 272():106579. PubMed ID: 33773332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of mitochondrial bioenergetics.
    Madeira VM
    Methods Mol Biol; 2012; 810():1-6. PubMed ID: 22057557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network representation and analysis of energy coupling mechanisms in cellular metabolism by a graph-theoretical approach.
    Nath S
    Theory Biosci; 2022 Sep; 141(3):249-260. PubMed ID: 35499671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The photodynamic and intrinsic effects of Azure B on mitochondrial bioenergetics and the consequences of its intrinsic effects on hepatic energy metabolism.
    Raimundo AFG; Dos Santos KBP; Klosowski EM; de Souza BTL; Mito MS; Constantin RP; Mantovanelli GC; Mewes JM; Bizerra PFV; Menezes PVMDC; Utsunomiya KS; Gilglioni EH; Marchiosi R; Dantas Dos Santos W; Ferrarese-Filho O; Caetano W; Pereira PCS; Gonçalves RS; Constantin J; Ishii-Iwamoto EL; Constantin RP
    Photodiagnosis Photodyn Ther; 2021 Sep; 35():102446. PubMed ID: 34289416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring Mitochondrial Function: From Organelle to Organism.
    Lewis MT; Levitsky Y; Bazil JN; Wiseman RW
    Methods Mol Biol; 2022; 2497():141-172. PubMed ID: 35771441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. 1966.
    Mitchell P
    Biochim Biophys Acta; 2011 Dec; 1807(12):1507-38. PubMed ID: 22082452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of mitochondria bioenergetics using a composable chemiosmotic energy transduction rate law: theory and experimental validation.
    Chang I; Heiske M; Letellier T; Wallace D; Baldi P
    PLoS One; 2011; 6(9):e14820. PubMed ID: 21931590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.