These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38836718)

  • 1. Analysis of output characteristics of positive feedback piezoelectric energy harvester based on nonlinear magnetic coupling.
    Shi R; Chen J; Ma T; Li C; Zhang W; Ye D
    Rev Sci Instrum; 2024 Jun; 95(6):. PubMed ID: 38836718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Characteristics and Experimental Research of Linear-Arch Bi-Stable Piezoelectric Energy Harvester.
    Zhang X; Zhu F; Chen L; Chen X; Guo Y; Xu H
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester.
    Ma T; Sun K; Jia S; Du F; Zhang Z
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester.
    Li X; Ma T; Liu B; Wang C; Su Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Self-Powered Engine Health Monitoring System Based on L-Shaped Wideband Piezoelectric Energy Harvester.
    Shi S; Yue Q; Zhang Z; Yuan J; Zhou J; Zhang X; Lu S; Luo X; Shi C; Yu H
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30487394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid Piezoelectric and Electromagnetic Broadband Harvester with Double Cantilever Beams.
    Jiang B; Zhu F; Yang Y; Zhu J; Yang Y; Yuan M
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations.
    Yu H; Zhang X; Shan X; Hu L; Zhang X; Hou C; Xie T
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester.
    Zhu Y; Zhang Z; Zhang P; Tan Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications.
    Pertin O; Guha K; Jakšić O; Jakšić Z; Iannacci J
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body.
    Li X; Bi C; Li Z; Liu B; Wang T; Zhang S
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibration Characteristics and Experimental Research of Combined Beam Tri-Stable Piezoelectric Energy Harvester.
    Zhang X; Xu H; Chen X; Zhu F; Guo Y; Tian H
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical and Experimental Investigation of a Rotational Magnetic Couple Piezoelectric Energy Harvester.
    Sun F; Dong R; Zhou R; Xu F; Mei X
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.
    Jiang J; Liu S; Feng L; Zhao D
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design Procedure and Experimental Verification of a Broadband Quad-Stable 2-DOF Vibration Energy Harvester.
    Zayed AAA; Assal SFM; Nakano K; Kaizuka T; El-Bab AMRF
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Curve-Shaped Beam Bistable Piezoelectric Energy Harvester with Variable Potential Well: Modeling and Numerical Simulation.
    Chen X; Zhang X; Chen L; Guo Y; Zhu F
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations.
    Piyarathna IE; Thabet AM; Ucgul M; Lemckert C; Lim YY; Tang ZS
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.