These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38836718)

  • 21. Optimized multi-frequency nonlinear broadband piezoelectric energy harvester designs.
    Elgamal MA; Elgamal H; Kouritem SA
    Sci Rep; 2024 May; 14(1):11401. PubMed ID: 38762520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical Study on Widening Bandwidth of Piezoelectric Vibration Energy Harvester with Nonlinear Characteristics.
    Qichang Z; Yang Y; Wei W
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application.
    Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Analysis of a Magnetically Coupled Multi-Frequency Hybrid Energy Harvester.
    Xu Z; Yang H; Zhang H; Ci H; Zhou M; Wang W; Meng A
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental Investigation on a Novel Airfoil-Based Piezoelectric Energy Harvester for Aeroelastic Vibration.
    Shan X; Tian H; Cao H; Feng J; Xie T
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32722607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Arc-shaped Piezoelectric Bistable Vibration Energy Harvester: Modeling and Experiments.
    Zhang X; Yang W; Zuo M; Tan H; Fan H; Mao Q; Wan X
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling and Efficiency Analysis of a Piezoelectric Energy Harvester Based on the Flow Induced Vibration of a Piezoelectric Composite Pipe.
    Zhou M; Al-Furjan MSH; Wang B
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Research on nonlinear isometric L-shaped cantilever beam type piezoelectric wind energy harvester based on magnetic coupling.
    He L; Yu G; Han Y; Liu L; Hu D; Cheng G
    Rev Sci Instrum; 2022 Nov; 93(11):115004. PubMed ID: 36461430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On Mechanical and Electrical Coupling Determination at Piezoelectric Harvester by Customized Algorithm Modeling and Measurable Properties.
    Perez-Alfaro I; Gil-Hernandez D; Murillo N; Bernal C
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multimodal Multidirectional Piezoelectric Vibration Energy Harvester by U-Shaped Structure with Cross-Connected Beams.
    Qin H; Mo S; Jiang X; Shang S; Wang P; Liu Y
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center.
    Chen J; Liu X; Wang H; Wang S; Guan M
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of Output Performance of a Novel Symmetrical T-Shaped Trapezoidal Micro Piezoelectric Energy Harvester Using a PZT-5H.
    Xu W; Ao H; Zhou N; Song Z; Jiang H
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Analysis of an Extended Simply Supported Beam Piezoelectric Energy Harvester.
    Su WJ; Tseng CH
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlinear Dynamic Analysis of Bistable Piezoelectric Energy Harvester with a New-Type Dynamic Amplifier.
    Man D; Xu G; Xu H; Xu D; Tang L
    Comput Intell Neurosci; 2022; 2022():7155628. PubMed ID: 35789613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Linear-Arc Composite Beam Piezoelectric Energy Harvester Modeling and Finite Element Analysis.
    Zhang X; Guo Y; Zhu F; Chen X; Tian H; Xu H
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic Design of a Quad-Stable Piezoelectric Energy Harvester via Bifurcation Theory.
    Zhang Q; Yan Y; Han J; Hao S; Wang W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and analysis of a connected broadband multi-piezoelectric-bimorph- beam energy harvester.
    Zhang H; Afzalul K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):1016-23. PubMed ID: 24859665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bi-Directional Piezoelectric Multi-Modal Energy Harvester Based on Saw-Tooth Cantilever Array.
    Čeponis A; Mažeika D; Kilikevičius A
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of a Novel Two-Directional Piezoelectric Energy Harvester With Permanent Magnets and Multistage Force Amplifier.
    Wen S; Wu Z; Xu Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):840-849. PubMed ID: 31796396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.