BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38836777)

  • 1. Generality of Enhancing the Dissolution Rates of Free Acid Amorphous Solid Dispersions by the Incorporation of Sodium Hydroxide.
    Zhang HJ; Chiang CW; Maschmeyer-Tombs T; Conklin B; Napolitano JG; Lubach JW; Nagapudi K; Mao C; Chen Y
    Mol Pharm; 2024 Jun; ():. PubMed ID: 38836777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Buffer pH and Concentration on the Dissolution Rates of Sodium Indomethacin-Copovidone and Indomethacin-Copovidone Amorphous Solid Dispersions.
    Chiang CW; Tang S; Mao C; Chen Y
    Mol Pharm; 2023 Dec; 20(12):6451-6462. PubMed ID: 37917181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Counterions on Dissolution of Amorphous Solid Dispersions Studied by Surface Area Normalized Dissolution.
    Chen Y; Lubach JW; Tang S; Narang AS
    Mol Pharm; 2021 Sep; 18(9):3429-3438. PubMed ID: 34338529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance.
    Indulkar AS; Lou X; Zhang GGZ; Taylor LS
    Mol Pharm; 2019 Mar; 16(3):1327-1339. PubMed ID: 30669846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does Media Choice Matter When Evaluating the Performance of Hydroxypropyl Methylcellulose Acetate Succinate-Based Amorphous Solid Dispersions?
    Bapat P; Paul S; Thakral NK; Tseng YC; Taylor LS
    Mol Pharm; 2023 Nov; 20(11):5714-5727. PubMed ID: 37751517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution.
    Purohit HS; Taylor LS
    Pharm Res; 2017 Dec; 34(12):2842-2861. PubMed ID: 28956218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug Release and Nanodroplet Formation from Amorphous Solid Dispersions: Insight into the Roles of Drug Physicochemical Properties and Polymer Selection.
    Yang R; Mann AKP; Van Duong T; Ormes JD; Okoh GA; Hermans A; Taylor LS
    Mol Pharm; 2021 May; 18(5):2066-2081. PubMed ID: 33784104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxypropyl methylcellulose acetate succinate as an exceptional polymer for amorphous solid dispersion formulations: A review from bench to clinic.
    Butreddy A
    Eur J Pharm Biopharm; 2022 Aug; 177():289-307. PubMed ID: 35872180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Congruent release of drug and polymer: A "sweet spot" in the dissolution of amorphous solid dispersions.
    Saboo S; Mugheirbi NA; Zemlyanov DY; Kestur US; Taylor LS
    J Control Release; 2019 Mar; 298():68-82. PubMed ID: 30731151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels.
    Sun DD; Ju TC; Lee PI
    Eur J Pharm Biopharm; 2012 May; 81(1):149-58. PubMed ID: 22233548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of HPMCAS on the Dissolution Performance of Polyvinyl Alcohol Celecoxib Amorphous Solid Dispersions.
    Monschke M; Wagner KG
    Pharmaceutics; 2020 Jun; 12(6):. PubMed ID: 32545270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concordance of vacuum compression molding with spray drying in screening of amorphous solid dispersions of itraconazole.
    Dhumal G; Treffer D; Polli JE
    Int J Pharm; 2024 Apr; 654():123952. PubMed ID: 38417729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Surfactants on Itraconazole-HPMCAS Solid Dispersion Prepared by Hot-Melt Extrusion I: Miscibility and Drug Release.
    Solanki NG; Lam K; Tahsin M; Gumaste SG; Shah AV; Serajuddin ATM
    J Pharm Sci; 2019 Apr; 108(4):1453-1465. PubMed ID: 30395834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay of Drug-Polymer Interactions and Release Performance for HPMCAS-Based Amorphous Solid Dispersions.
    Bapat P; Paul S; Tseng YC; Taylor LS
    Mol Pharm; 2024 Mar; 21(3):1466-1478. PubMed ID: 38346390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-Induced Phase Separation of Spray-Dried Amorphous Solid Dispersions.
    Li N; Cape JL; Mankani BR; Zemlyanov DY; Shepard KB; Morgen MM; Taylor LS
    Mol Pharm; 2020 Oct; 17(10):4004-4017. PubMed ID: 32931293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparative Study between A Protein Based Amorphous Formulation and Other Dissolution Rate Enhancing Approaches: A Case Study with Rifaximin.
    Zhuo X; Margrethe Brekstad Kjellin M; Schaal Z; Zhang T; Löbmann K; Leng D
    Pharmaceutics; 2022 Dec; 15(1):. PubMed ID: 36678757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the Release Mechanisms of ITZ:HPMCAS Amorphous Solid Dispersions: The Role of Drug-Rich Colloids.
    Nunes PD; Pinto JF; Henriques J; Paiva AM
    Mol Pharm; 2022 Jan; 19(1):51-66. PubMed ID: 34919407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Ternary Amorphous Solid Dispersions Manufactured by Hot-Melt Extrusion and Spray-Drying─Comparison of
    Trenkenschuh E; Blattner SM; Hirsh D; Hoffmann R; Luebbert C; Schaefer K
    Mol Pharm; 2024 Mar; 21(3):1309-1320. PubMed ID: 38345459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Amorphous Quercetin/ Hydroxypropylmethylcellulose Acetate Succinate Solid Dispersions Prepared by Co-Precipitation Method to Enhance Quercetin Dissolution.
    Wang Y; Fang Y; Zhou F; Liang Q; Deng Y
    J Pharm Sci; 2021 Sep; 110(9):3230-3237. PubMed ID: 34004218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive evaluation of polymer types and ratios in Spray-Dried Dispersions: Compaction, Dissolution, and physical stability.
    Yu D; Nie H; Hoag SW
    Int J Pharm; 2024 Jan; 650():123674. PubMed ID: 38061497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.